The Sulfo-NHS ester is a mainstay reagent for facilitating amide bond formation between carboxylic acids and amine functionalities in water. However, the preparation of Sulfo-NHS esters currently requires hydrophobic carboxylic acids, which are poorly water-soluble, to first be reacted with the -hydroxysulfosuccinimide sodium salt, which is insoluble in organic solvents. The mutually incompatible solvation requirements thus complicate the synthesis of Sulfo-NHS esters. As a simple, rapid, and cost-effective solution to this problem, we report that the use of 15-crown-5 to complex the sodium cation of -hydroxysulfosuccinimide sodium salt circumnavigates these solvation incompatibility issues by rendering the -hydroxysulfosuccinimide salt soluble in organic solvents, resulting in a cleaner esterification reaction and thus improved yields of activated ester product. We also demonstrate that the resultant "crowned" Sulfo-NHS-ester remains water-soluble and is no less reactive than its classic "uncrowned" Sulfo-NHS counterpart when used in bioconjugation reactions between protein amine-functionalities and hydrophobic carboxylic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797585PMC
http://dx.doi.org/10.1021/acs.bioconjchem.3c00396DOI Listing

Publication Analysis

Top Keywords

sulfo-nhs esters
12
organic solvents
12
carboxylic acids
12
hydrophobic carboxylic
8
-hydroxysulfosuccinimide sodium
8
sodium salt
8
sulfo-nhs
5
crossing solubility
4
solubility rubicon
4
rubicon 15-crown-5
4

Similar Publications

Protein cross-linking has assumed an irreplaceable role in structural proteomics. Recently, significant efforts have been made to develop novel mass spectrometry (MS)-cleavable reagents. At present, only water-insoluble MS-cleavable cross-linkers are commercially available.

View Article and Find Full Text PDF

The Sulfo-NHS ester is a mainstay reagent for facilitating amide bond formation between carboxylic acids and amine functionalities in water. However, the preparation of Sulfo-NHS esters currently requires hydrophobic carboxylic acids, which are poorly water-soluble, to first be reacted with the -hydroxysulfosuccinimide sodium salt, which is insoluble in organic solvents. The mutually incompatible solvation requirements thus complicate the synthesis of Sulfo-NHS esters.

View Article and Find Full Text PDF

Successful strategies for the attachment of oligopeptides to mesoporous silica with pores large enough to load biomolecules should utilize the high surface area of pores to provide an accessible, protective environment. A two-step oligopeptide functionalization strategy is examined here using diazirine-based heterobifunctional linkers. Mesoporous silica nanoparticles (MSNPs) with average pore diameter of ~8 nm and surface area of ~730 m/g were synthesized and amine-functionalized.

View Article and Find Full Text PDF

The display of native-like human immunodeficiency virus type 1 envelope (HIV-1 Env) trimers on liposomes has gained wide attention over the last few years. Currently, available methods have enabled the preparation of Env-liposome conjugates of unprecedented quality. However, these protocols require the Env trimer to be tagged and/or to carry a specific functional group.

View Article and Find Full Text PDF

Cost-effective paper-based electrochemical immunosensor using a label-free assay for sensitive detection of ferritin.

Analyst

July 2020

Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Chulalongkorn University, Bangkok, Pathumwan 10330, Thailand and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Pathumwan 10330, Thailand.

Ferritin, a blood cell protein containing iron, is a crucial biomarker that is used to estimate the risk assessment of iron deficiency anemia. For point-of-care analysis, a reliable, cost-effective, selective, sensitive, and portable tool is extremely necessary. In this study, a label-free electrochemical immunosensor for detecting ferritin using a paper-based analytical device (ePAD) was created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!