A novel anti-resonant fiber for low-loss terahertz waveguides is proposed and analyzed. The terahertz fiber uses high-resistivity silicon as the bulk material and nine nested double-layer concentric circular tubes in the cladding to reduce propagation losses. The effects of the geometric parameters on the propagation characteristics are analyzed by the finite element method. The result indicates that an ultra-low total loss of 4.9×10 / is achieved at =1 . The low-loss propagation window is 0.48 THz ranging from 0.6 to 1.4 THz. In addition, the influence of mechanical bending on the propagation loss is investigated and the bending loss can be maintained at less than 7.3×10 / at =1 even if the bending radius is larger than 60 cm. The properties of this anti-resonant fiber are significantly superior to those of previously reported structures and the fiber thus has large commercial potential.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.498066DOI Listing

Publication Analysis

Top Keywords

anti-resonant fiber
12
fiber high-resistivity
8
high-resistivity silicon
8
silicon for thz
4
for thz wave
4
wave transmission
4
transmission novel
4
novel anti-resonant
4
fiber
4
fiber low-loss
4

Similar Publications

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.

View Article and Find Full Text PDF

Design of a Nested Hollow-Core Anti-Resonant Fiber Sensor for Simultaneous Measurement of Temperature and Strain.

Sensors (Basel)

December 2024

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China.

A highly sensitive sensor, which can detect the temperature and strain simultaneously, is proposed using a hollow-core anti-resonant fiber with composite nested tubes. The sensing fiber contains two kinds of nested tubes, and two different sensing mechanisms, the resonance coupling effect and the intermodal interference, are realized in the same section of a hollow-core anti-resonant fiber fully filled with ethanol. Five conjoined nested anti-resonant tubes are introduced to suppress the confinement loss of the higher-order mode LP.

View Article and Find Full Text PDF

We have developed an effective one-step extrusion method to prepare a nodeless chalcogenide hollow-core anti-resonance fiber, characterized by excellent symmetry and less requirements for drawing pressure in achieving the desired wall thickness. The resulting fiber exhibits excellent uniformity, with an ultra-large effective mode area of 21970 µm and a low overlap factor of  = 0.03%.

View Article and Find Full Text PDF

We report the fabrication and characterization of a multi-core anti-resonant hollow core fiber with low inter-core coupling. The optical losses were 0.03 and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!