Unraveling Steric Effects on Ultrafast Bond-Dissociation Processes of Photochromic Radical Complexes.

J Phys Chem Lett

Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.

Published: December 2023

Photochromic reactions of the phenoxyl-imidazolyl radical complex (PIC), which is one of the rate-tunable fast T-type photoswitches, dramatically change by the introduction of bulky substituents around the photochromic units. While these substituents are expected to affect the initial bond dissociation processes, they have not been elucidated yet. Here, we revealed the ultrafast bond dissociation processes of PIC derivatives with different bulky substituents by subpicosecond to nanosecond transient absorption spectroscopy. We revealed that the bulky substituents around the photochromic units decelerate the bond dissociation processes, whereas they largely accelerate the thermal back reactions of the photogenerated open-ring isomer. Moreover, we found clear correlations between the formation kinetics of the open-ring isomer and molecular structural changes. The initial bond-dissociation process dictates the products and the efficiency of photochromic reactions. Therefore, revealing these processes is important not only for fundamental photochemistry but also for optimizing photochromic properties for advanced functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c03232DOI Listing

Publication Analysis

Top Keywords

bulky substituents
12
bond dissociation
12
dissociation processes
12
photochromic reactions
8
substituents photochromic
8
photochromic units
8
open-ring isomer
8
photochromic
6
processes
5
unraveling steric
4

Similar Publications

Under most conditions, 2,4-dihalopyrimidines undergo substitution reactions at C4. Here we report that Pd(II) precatalysts supported by bulky -heterocyclic carbene ligands uniquely effect C2-selective cross-coupling of 2,4-dichloropyrimidine with thiols. The regioselectivity of this reaction stands in stark contrast to ∼1500 previously reported Pd-catalyzed cross-couplings that favor C4 in the absence of other substituents on the pyrimidine ring.

View Article and Find Full Text PDF

Viologen derivatives feature two reversible one-electron redox processes and have been extensively utilized in aqueous organic flow batteries (AOFBs). However, the early variant, methyl viologen (MVi), exhibits low stability in aqueous electrolytes, restricting its practical implementation in AOFB technology. In this context, leveraging the tunability of organic molecules, various substituents have been incorporated into the viologen core to achieve better stability, lower redox potential, and improved solubility.

View Article and Find Full Text PDF

A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking.

View Article and Find Full Text PDF

Building on our previous studies, which have demonstrated that homochiral propagating species-(*,*)-[MeGa(-OCH(Me)COR)]-were crucial for the heteroselectivity of [MeGa(-OCH(Me)COMe)] in the ring-opening polymerization (ROP) of racemic lactide (-LA), we have investigated the effect of alkyl groups on the structure and catalytic properties of dialkylgallium alkoxides in the ROP of -LA. Therefore, we have isolated and characterized the -[RGa(-OCH(Me)COMe] (R = Et (), Pr () and -[RGa(-OCH(Me)CHN] (R = Et (), Pr ()) complexes, to demonstrate the effect of alkyl groups on the chiral recognition induced the formation of the respective homochiaral species-(*,*)-[RGa(-OCH(Me)COMe)] and (*,*)-[RGa(-OCH(Me)CHN]. Moreover, we have investigated the structure of (,)-[RGa(-OCH(Me)COMe] (R = Et ((,)-, R = Pr ((,)-,) and their catalytic activity in the ROP of -LA.

View Article and Find Full Text PDF

Isolation of Inner-Sphere Aquo Complexes of Samarium(II).

J Am Chem Soc

January 2025

Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.

The and isomers of [Sm(dicyclohexano-18-crown-6)(HO)]I exhibiting water molecules bound to the Sm ion have been isolated and characterized. Sm possesses an electrochemical potential sufficient for water reduction, and thus these complexes add to the recent body of evidence that the oxidation of Sm by water can operate by a mechanism that is not straightforward. These complexes are obtained by the direct addition of stoichiometric amounts of water to solutions of the respective Sm(dicyclohexano-18-crown-6)I isomers under an inert atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!