Chemically stable metal-organic frameworks (MOFs) featuring interconnected hierarchical pores have proven to be promising for a remarkable variety of applications. Nevertheless, the framework's susceptibility to capillary-force-induced pore collapse, especially during water evacuation, has often limited practical applications. Methodologies capable of predicting the relative magnitudes of these forces as functions of the pore size, chemical composition of the pore walls, and fluid loading would be valuable for resolution of the pore collapse problem. Here, we report that a molecular simulation approach centered on evacuation-induced nanocavitation within fluids occupying MOF pores can yield the desired physical-force information. The computations can spatially pinpoint evacuation elements responsible for collapse and the chemical basis for mitigation of the collapse of modified pores. Experimental isotherms and difference-electron density measurements of the MOF NU-1000 and four chemical variants validate the computational approach and corroborate predictions regarding relative stability, anomalous sequence of pore-filling, and chemical basis for mitigation of destructive forces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c07624DOI Listing

Publication Analysis

Top Keywords

pore collapse
8
chemical basis
8
basis mitigation
8
nanocavitation approach
4
approach understanding
4
understanding water
4
water capture
4
capture water
4
water release
4
release framework
4

Similar Publications

Porous materials and structures, such as subterranean fire ant nests, are abundant in nature. It is hypothesized that these structures likely have evolved biological adaptations that enhance their collapse resistance. This research aims to elucidate the collapse-resistant mechanisms of pore geometries in fire ant nests.

View Article and Find Full Text PDF

Biomass holds significant potential for large-scale synthesis of hard carbon (HC), and HC is seen as the most promising anode material for sodium-ion batteries (SIBs). However, designing a HC anode with a rich pore structure, moderate graphitization and synthesis through a simple process using a cost-effective precursor to advance SIBs has long been a formidable challenge. This is primarily because high temperatures necessary for pore regulation invariably lead to excessive graphitization.

View Article and Find Full Text PDF

Characteristics of Three-Dimensional Pore-Fracture Network Development and Enhanced Seepage Heat Transfer in Hot Dry Rock Stimulated by Temperature Shock Effects.

ACS Omega

December 2024

State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.

Hot dry rock (HDR) geothermal is a sustainable and clean energy source. However, its development progress is hindered by creating seepage channels in deep reservoirs with low porosity and permeability. Traditional hydraulic fracturing techniques are ineffective for enhancing the permeability of these high-strength reservoirs.

View Article and Find Full Text PDF

Drilling wells in unconsolidated formations is commonly undertaken to extract drinking water and other applications, such as aquifer thermal energy storage (ATES). To increase the efficiency of an ATES system, the drilling campaigns are targeting greater depths and enlarging the wellbore diameter in the production section to enhance the flow rates. In these cases, wells are more susceptible to collapse.

View Article and Find Full Text PDF

Development of cerium-doped porous composite aerogel using cellulose nanocrystals for enhanced CO capture and conversion.

J Colloid Interface Sci

December 2024

School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Reducing carbon dioxide (CO) levels in the atmosphere is crucial for combating global warming. One effective strategy involves using porous materials for the combined processes of CO capture and catalytic conversion. In this study, we developed composite aerogel materials using cellulose nanocrystals (CNCs) as templates, doped with cerium oxide, to enhance CO capture and conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!