Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-performance electromagnetic wave (EMW) absorbers are essential for addressing electromagnetic pollution and military security. However, challenges remain in realizing cost-effectiveness and modulating absorbing properties. In this study, heterogeneous Co/nanoporous carbon (NPC) nano-islands are prepared by efficient method co-precipitation combined with in situ pyrolysis. The multi-regulation strategy of morphology, graphitization, and defect density is achieved by modulating the pyrolysis temperature. Adjusting the pyrolysis temperature can effectively balance the conductivity and defect density, optimizing the impedance matching and enhancing the attenuation. Furthermore, it facilitates obtaining the appropriate shape and size of Co magnetic nanoparticles (Co-MNPs), triggering strong surface plasmon resonance. This resonance, in turn, bolsters the synergy of dielectric and magnetic loss. The incorporation of porous nanostructures not only optimizes impedance matching and enhances multiple reflections but also improves interfacial polarization. Additionally, the presence of enriched defects and heteroatom doping significantly enhances dipole polarization. Notably, the absorber exhibits an impressive minimum reflection loss (RL) of -73.87 dB and a maximum effective absorption bandwidth (EAB) of 6.64 GHz. The combination of efficient fabrication methods, a performance regulation strategy through pyrolysis temperature modulation, and radar cross section (RCS) simulation provides a high-performance EMW absorber and can pave the way for large-scale applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202306990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!