Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710813PMC
http://dx.doi.org/10.2147/IJN.S436111DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
cord injury
12
injury repair
8
repair regeneration
8
neural tissue
8
electrical stimulation
8
mechanisms electrical
8
sci repair
8
repair
7
electrical
7

Similar Publications

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

An 86-year-old male patient developed paresthesia in both hands, and six months later, pancytopenia was noted. He was diagnosed with myelodysplastic syndrome following bone marrow aspiration. Despite high serum vitamin B12 level, elevated level of serum homocysteine, positive anti-intrinsic factor antibody, and T-weighted hyperintense lesions on spinal cord MRI led to a diagnosis of subacute combined degeneration of the spinal cord.

View Article and Find Full Text PDF

Clinical perspective on pluripotent stem cells derived cell therapies for the treatment of neurodegenerative diseases.

Adv Drug Deliv Rev

January 2025

Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.

Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.

View Article and Find Full Text PDF

Timing in orthopaedic surgery - Rethinking traditional myths with a critical perspective.

Injury

January 2025

Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany; Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Giessen, Giessen, Germany. Electronic address:

Purpose: Standard operating procedures aim to achieve a standardized and assumedly high-quality therapy. However, in orthopaedic surgery, the aspect of temporal urgency is often based on surgical tradition and experience. At a time of evidence-based medicine, it is necessary to question these temporal guidelines.

View Article and Find Full Text PDF

Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.

Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!