Impact of exposure to glyphosate-based herbicide on morphological and physiological parameters in embryonic and larval development of zebrafish.

Environ Toxicol

Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.

Published: March 2024

Glyphosate-based herbicides (GBH) have been commonly used in agriculture to inhibit weed growth and increase yields. However, due to the high solubility of these herbicides in water, they can reach aquatic environments, by infiltration, erosion, and/or lixiviation, affecting non target organisms. Thus, this study aimed to characterize the toxicity of GBH Roundup WG® (RWG®) during the embryonic and larval development of Danio rerio. Embryos (3 hours post fertilization, hpf-until hatching) and larvae (3 days post fertilization, dpf to 6 dpf) were exposed to concentrations of 0.065 and 6.5 mg L . They were evaluated for survival, hatching, spontaneous movements, heartbeat, morphology, and morphometry by in vivo photographs in microscope, cell proliferation and apoptosis by immunohistochemistry, and exploratory behavior and phototropism by video recording. Our results showed an increase in embryo and larvae mortality in those exposed to 0.065 mg L , as well as a reduction in spontaneous embryo movements. The larval heartbeats showed a decrease at 4 dpf in the group exposed to 0.065 mg L and an increase at 5 and 6 dpf in both exposed groups. Cell proliferation was reduced in both groups exposed in embryos and only in the 0.065 mg L group in larvae, while cell death increased in embryos exposed to 6.5 mg L . These results demonstrated the toxic effect of low concentrations of the herbicide RWG® during embryonic and larval development of non target organisms, as well as the importance of constantly reviewing acceptable limits for exposure in natural environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.24024DOI Listing

Publication Analysis

Top Keywords

embryonic larval
12
larval development
12
target organisms
8
rwg® embryonic
8
post fertilization
8
dpf exposed
8
cell proliferation
8
exposed 0065 mg l
8
exposed
6
impact exposure
4

Similar Publications

Article Synopsis
  • Isopropylated phenyl phosphates (IPP) are organophosphate flame retardants used in various products, but their leaching raises toxicity concerns due to limited toxicological studies.
  • Using zebrafish embryos, the study found significant biological disruptions, including morphological changes and alterations in dopamine levels, alongside behavioral deficits at low concentrations.
  • Further analysis indicated IPP inhibits retinoic acid receptor activity and caused hypermethylation in embryos, with distinct impacts observed in the eyes, revealing changes in genes related to nervous system functions.
View Article and Find Full Text PDF

A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo.

Proc Natl Acad Sci U S A

January 2025

Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.

Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.

View Article and Find Full Text PDF

Myogenic regulator factors (MRFs) are essential for skeletal muscle development in vertebrates, including fish. This study aimed to characterize the role of () in muscle development in Nile tilapia by cloning from muscle tissues. To explore the function of , CRISPR/Cas9 gene editing was employed.

View Article and Find Full Text PDF

In this study, we investigated the regulatory roles of the () gene in the reproductive process of female . Its total cDNA length was 1848 bp, encoding for 460 amino acids. It contained conserved domains typical of epoxide hydrolases, such as the Abhydrolase family domain, the EHN epoxide hydrolase superfamily domain, and the "WWG" and "HGWP" motifs.

View Article and Find Full Text PDF

Salinity does not affect late-stage in-egg embryonic, or immediate post-hatch development in an ecologically important land crab species.

J Exp Biol

December 2024

Marine Biology & Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.

Environmental drivers such as salinity can impact the timing, and duration of developmental events in aquatic early life stages of crustaceans, including terrestrial crabs of the family Gecarcinidae. Low salinity delays larval development in land crabs, but nothing is known about its influence on the crucial late-stage encapsulated embryonic, or immediate post-hatch development. Therefore, we exposed fertilised late-stage embryos of the Christmas Island red crab (Gecarcoidea natalis) to differing salinities (100, 75, 50, or 25 % sea water) for 24 h during their spawning period and measured some key developmental and physiological traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!