Supernumerary limbs promise to allow users to perform complex tasks that would otherwise require the actions of teams. However, how the user's capability for multimanual coordination compares to bimanual coordination, and how the motor system decides to configure its limb contributions given task redundancy is unclear. We conducted bimanual and trimanual (with the foot as a third-hand controller) virtual reality visuomotor tracking experiments to study how 32 healthy participants changed their limb coordination in response to uninstructed cursor mapping changes. This used a shared cursor mapped to the average limbs' position for different limb combinations. The results show that most participants correctly identified the different mappings during bimanual tracking, and accordingly minimized task-irrelevant motion. Instead during trimanual coordination, participants consistently moved all three limbs concurrently, showing weaker ipsilateral hand-foot coordination. These findings show how redundancy resolution and the resulting coordination patterns differ between similar bimanual and trimanual tasks. Further research is needed to consider the effect of learning on coordination behaviour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10340722 | DOI Listing |
Bioinform Adv
January 2025
Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, D-69120 Heidelberg, Germany.
Motivation: Since their introduction about 10 years ago, methylation clocks have provided broad insights into the biological age of different species, tissues, and in the context of several diseases or aging. However, their application to single-cell methylation data remains a major challenge, because of the inherent sparsity of such data, as many CpG sites are not covered. A methylation clock applicable on single-cell level could help to further disentangle the processes that drive the ticking of epigenetic clocks.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, University of California, Los Angeles, California, United States.
Purpose: The optic nerve (ON) is mechanically perturbed by eye movements that shift cerebrospinal fluid (CSF) within its surrounding dural sheath. This study compared changes in ON length and CSF volume within the intraorbital ON sheath caused by eye movements in healthy subjects and patients with optic neuropathies.
Methods: Twenty-one healthy controls were compared with 11 patients having primary open angle glaucoma (POAG) at normal intraocular pressure (IOP), and 11 with chronic non-arteritic anterior ischemic optic neuropathy (NA-AION).
Comput Methods Programs Biomed
January 2025
School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China; Shandong Future Intelligent Financial Engineering Laboratory, Yantai 264005, China. Electronic address:
Background And Objective: Medical image segmentation is a technique used to identify and locate anatomical structures or diseased areas from medical images with high accuracy. Accurate image segmentation is crucial in medical applications such as clinical diagnosis, surgical planning, and treatment monitoring. It provides reliable quantitative information, which helps in making decisions.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States of America.
The advent of single-cell RNA sequencing (scRNA-seq) has greatly enhanced our ability to explore cellular heterogeneity with high resolution. Identifying subpopulations of cells and their associated molecular markers is crucial in understanding their distinct roles in tissues. To address the challenges in marker gene selection, we introduce CORTADO, a computational framework based on hill-climbing optimization for the efficient discovery of cell-type-specific markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!