Radical prostatectomy (RP) is a common surgical therapy to treat prostate cancer. The procedure has a high positive surgical margin (PSM) rate ranging from 4-48%. Patients with PSMs have a higher rate of cancer recurrence and often undergo noxious adjuvant therapy. Intraoperative surgical margin assessment (SMA) with an electrical impedance-based probe can potentially identify PSMs in real-time. This would enable surgeons to make data-based decisions in the operating room to improve patient outcomes. This paper focuses on characterizing an impedance sensing SMA probe with specialized electrodes to improve speed and bandwidth while maintaining accuracy. 3D electrical impedance tomography (EIT) reconstructions were generated from ex vivo bovine tissue to characterize probe imaging and to determine an optimal applied pressure range (15 Pa to 38 Pa). Classification accuracy of adipose and muscle tissue was evaluated by comparing the experimental data set to simulated data based on a ground truth binary map of the tissue. Experimental AUCs ≥0.83 were maintained up to 50 kHz. The developed impedance sensing probe successfully classified between muscle and adipose tissue in an ex vivo bovine model. Future work includes improving performance of the SMA probe with custom hardware and collecting data from ex vivo and in vivo prostatic tissues.Clinical Relevance-This technology is expected to reduce the rate of PSMs in RP and decrease the use of post-surgical adjuvant therapies. It is also anticipated that intraoperative impedance measurements will increase efficacy of nerve sparing procedures and reduce complications such as incontinence and erectile dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340037DOI Listing

Publication Analysis

Top Keywords

surgical margin
12
vivo bovine
12
intraoperative surgical
8
margin assessment
8
electrical impedance-based
8
impedance-based probe
8
bovine tissue
8
impedance sensing
8
sma probe
8
probe
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!