Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work presents EMaGer, a new 360° 64-channel high-density electromyography (HD-EMG) bracelet combined with an original data augmentation method for improved robustness in gesture recognition. By leveraging homogeneous electrode density and powerful deep learning techniques, the sensor is capable of rotation invariance around the arm axis, thus increasing gesture recognition robustness to electrode movement and inter-session evaluation. The system is made of a 4x16 electrode array covering the full circumference of the limb, and uses a sampling frequency of 1 kHz and a 16-bit resolution. The sensor's uniform and adjustable geometry paired with an array barrel shifting data augmentation (ABSDA) technique allows a convolutional neural network to maintain a 76.98% inter-session classification accuracy for a 6 gestures dataset, from a baseline intra-session accuracy of 93.75%. High inter-session classification accuracy decreases the training burden for users of EMG control systems such as myoelectric prostheses by minimizing calibration requirements. The same methods applied with different state-of-the-art sensors are demonstrated to be less effective. Thus, this work evidences the importance of co-designing the EMG sensor system with the gesture inference algorithms to leverage synergistic properties and solve state-of-the-art challenges.Clinical relevance- This paper establishes a method that alleviates clinical manipulations in setting up and calibrating myoelectric prosthetic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10340612 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!