Minimising haemolytic blood damage is an important objective when designing rotary blood pumps, however, calculating haemolysis can be computationally expensive and inaccurate. Efficiency and dissipated energy are much more easily calculable hydraulic parameters in the design and analysis of rotary blood pumps and although there is work to suggest that efficiency is not a good indicator of haemocompatibility, i.e. more efficient pumps do not necessarily cause less damage, there is recent speculation that dissipated energy can act as an easily calculable haemolysis analogue.This study shows that for design purposes, optimising for maximum efficiency and minimum dissipated energy are functionally the same as they are inherently and closely linked. Moreover a demonstration of rotary blood pump design has been completed using the NeoVAD paediatric left ventricular assist device optimising for both objective functions. The resulting designs appear similar in rotor blade shape and are similar in hydraulic performance.Clinical relevance- This reinforces the direct link between efficiency and dissipated energy when analysing rotary blood pumps at a given design operating point. This raises questions either of the claim that efficiency cannot be used as an easily calculable analogue for haemolysis or the validity of dissipated energy to act in this same manner.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340919DOI Listing

Publication Analysis

Top Keywords

dissipated energy
24
rotary blood
20
blood pumps
12
easily calculable
12
objective functions
8
blood pump
8
efficiency dissipated
8
energy easily
8
dissipated
6
efficiency
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!