Digital histopathology image analysis of tumor tissue sections has seen great research interest for automating standard diagnostic tasks, but also for developing novel prognostic biomarkers. However, research has mainly been focused on developing uniresolution models, capturing either high-resolution cellular features or low-resolution tissue architectural features. In addition, in the patch-based weakly-supervised training of deep learning models, the features which represent the intratumoral heterogeneity are lost. In this study, we propose a multiresolution attention-based multiple instance learning framework that can capture cellular and contextual features from the whole tissue for predicting patient-level outcomes. Several basic mathematical operations were examined for integrating multiresolution features, i.e. addition, mean, multiplication and concatenation. The proposed multiplication-based multiresolution model performed the best (AUC=0.864), while all multiresolution models outperformed the uniresolution baseline models (AUC=0.669, 0.713) for breast-cancer grading. (Implementation: https://github.com/tsikup/multiresolution-clam).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10341061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!