A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fetal Re-Identification in Multiple Pregnancy Ultrasound Images Using Deep Learning. | LitMetric

AI Article Synopsis

  • Ultrasound exams during pregnancy can identify abnormal fetal development, a major cause of perinatal mortality, but recognizing individual fetuses in multiple pregnancies is challenging.
  • The study examines the feasibility of fetal re-identification using a public dataset of ultrasound images from singleton pregnancies, achieving promising results with the FastReID framework.
  • The findings suggest that while re-identification in ultrasound images might enhance diagnostics, further research is needed with diverse datasets, especially involving multiple pregnancies, to ensure consistent performance and clarity on how the models work.

Article Abstract

Ultrasound examinations during pregnancy can detect abnormal fetal development, which is a leading cause of perinatal mortality. In multiple pregnancies, the position of the fetuses may change between examinations. The individual fetus cannot be clearly identified. Fetal re-identification may improve diagnostic capabilities by tracing individual fetal changes. This work evaluates the feasibility of fetal re-identification on FETAL_PLANES_DB, a publicly available dataset of singleton pregnancy ultrasound images. Five dataset subsets with 6,491 images from 1,088 pregnant women and two re-identification frameworks (Torchreid, FastReID) are evaluated. FastReID achieves a mean average precision of 68.77% (68.42%) and mean precision at rank 10 score of 89.60% (95.55%) when trained on images showing the fetal brain (abdomen). Visualization with gradient-weighted class activation mapping shows that the classifiers appear to rely on anatomical features. We conclude that fetal re-identification in ultrasound images may be feasible. However, more work on additional datasets, including images from multiple pregnancies and several subsequent examinations, is required to ensure and investigate performance stability and explainability.Clinical relevance- To date, fetuses in multiple pregnancies cannot be distinguished between ultrasound examinations. This work provides the first evidence for feasibility of fetal re-identification in pregnancy ultrasound images. This may improve diagnostic capabilities in clinical practice in the future, such as longitudinal analysis of fetal changes or abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340336DOI Listing

Publication Analysis

Top Keywords

fetal re-identification
20
ultrasound images
16
pregnancy ultrasound
12
multiple pregnancies
12
fetal
9
ultrasound examinations
8
improve diagnostic
8
diagnostic capabilities
8
fetal changes
8
feasibility fetal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!