A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

"Where does it hurt?": Exploring EDA Signals to Detect and Localise Acute Pain. | LitMetric

Pain is a highly unpleasant sensory experience, for which currently no objective diagnostic test exists to measure it. Identification and localisation of pain, where the subject is unable to communicate, is a key step in enhancing therapeutic outcomes. Numerous studies have been conducted to categorise pain, but no reliable conclusion has been achieved. This is the first study that aims to show a strict relation between Electrodermal Activity (EDA) signal features and the presence of pain and to clarify the relation of classified signals to the location of the pain. For that purpose, EDA signals were recorded from 28 healthy subjects by inducing electrical pain at two anatomical locations (hand and forearm) of each subject. The EDA data were preprocessed with a Discrete Wavelet Transform to remove any irrelevant information. Chi-square feature selection was used to select features extracted from three domains: time, frequency, and cepstrum. The final feature vector was fed to a pool of classification schemes where an Artificial Neural Network classifier performed best. The proposed method, evaluated through leave-one-subject-out cross-validation, provided 90% accuracy in pain detection (no pain vs. pain), whereas the pain localisation experiment (hand pain vs. forearm pain) achieved 66.67% accuracy.Clinical relevance- This is the first study to provide an analysis of EDA signals in finding the source of the pain. This research explores the viability of using EDA for pain localisation, which may be helpful in the treatment of noncommunicable patients.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10341157DOI Listing

Publication Analysis

Top Keywords

pain
15
eda signals
12
pain pain
12
pain localisation
8
eda
6
"where hurt?"
4
hurt?" exploring
4
exploring eda
4
signals
4
signals detect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!