A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-plane Strain Analysis by Correlating Geometry and Visual Data Through a Gradient-Based Surface Reconstruction. | LitMetric

Abnormalities in tissue can be detected and analyzed by evaluating mechanical properties, such as strain and stiffness. While current sensor systems are effective in measuring longitudinal properties perpendicular to the measurement sensor, identifying in-plane deformation remains a significant challenge. To address this issue, this paper presents a novel method for reconstructing in-plane deformation of observed tissue surfaces using a fringe projection sensor specifically designed for measuring tissue deformations. The method employs the latest techniques from computer vision, such as differentiable rendering, to formulate the in-plane reconstruction as a differentiable optimization problem. This enables the use of gradient-based solvers for an efficient and effective optimization of the problem optimum. Depth information and image information are combined using landmark correspondences between the respective image observations of the undeformed and deformed scenes. By comparing the reconstructed pre- and post-deformation geometry, the in-plane deformation can be revealed through the analysis of relative variations between the corresponding models' geometries. The proposed reconstruction pipeline is validated on an experimental setup, and the potential for intraoperative applications is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340777DOI Listing

Publication Analysis

Top Keywords

in-plane deformation
12
optimization problem
8
in-plane
5
in-plane strain
4
strain analysis
4
analysis correlating
4
correlating geometry
4
geometry visual
4
visual data
4
data gradient-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!