Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The generation of super resolution ultrasound images from the low-resolution (LR) brightness mode (B-mode) images acquired by the portable point of care ultrasound systems has been of sufficient interest in the recent past. With the advancements in deep learning, there have been numerous attempts in this direction. However, all the approaches have been concentrated on employing the direct image as the input to the neural network. In this work, a stationary wavelet (SWT) decomposition is employed to extract the features from the input LR image which is passed through a modified residual network and the learned features are combined using the inverse SWT to reconstruct the high resolution (HR) image at a 4× scale factor. The proposed approach when compared to the state-of-the art approaches, results in an improved high resolution reconstruction.Clinical relevance- The proposed approach will enable the generation of high-resolution images from portable ultrasound systems, allowing for easier interpretation and faster diagnostics in primary care settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10340196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!