As the most common malignant tumor worldwide, hepatocellular carcinoma (HCC) has a high rate of death and recurrence, and microvascular invasion (MVI) is considered to be an independent risk factor affecting its early recurrence and poor survival rate. Accurate preoperative prediction of MVI is of great significance for the formulation of individualized treatment plans and long-term prognosis assessment for HCC patients. However, as the mechanism of MVI is still unclear, existing studies use deep learning methods to directly train CT or MR images, with limited predictive performance and lack of explanation. We map the pathological "7-point" baseline sampling method used to confirm the diagnosis of MVI onto MR images, propose a vision-guided attention-enhanced network to improve the prediction performance of MVI, and validate the prediction on the corresponding pathological images reliability of the results. Specifically, we design a learnable online class activation map (CAM) to guide the network to focus on high-incidence regions of MVI guided by an extended tumor mask. Further, an attention-enhanced module is proposed to force the network to learn image regions that can explain the MVI results. The generated attention maps capture long-distance dependencies and can be used as spatial priors for MVI to promote the learning of vision-guided module. The experimental results on the constructed multi-center dataset show that the proposed algorithm achieves the state-of-the-art compared to other models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10340750 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!