Left atrial appendage (LAA) is the major source of thromboembolism in patients with non-valvular atrial fibrillation. Currently, LAA occlusion can be offered as a treatment for these patients, obstructing the LAA through a percutaneously delivered device. Nevertheless, correct device sizing is a complex task, requiring manual analysis of medical images. This approach is sub-optimal, time-demanding, and highly variable between experts. Different solutions were proposed to improve intervention planning, but, no efficient solution is available to 2D ultrasound, which is the most used imaging modality for intervention planning and guidance. In this work, we studied the performance of recently proposed deep learning methods when applied for the LAA segmentation in 2D ultrasound. For that, it was created a 2D ultrasound database. Then, the performance of different deep learning methods, namely Unet, UnetR, AttUnet, TransAttUnet was assessed. All networks were compared using seven metrics: i) Dice coefficient; ii) Accuracy iii) Recall; iv) Specificity; v) Precision; vi) Hausdorff distance and vii) Average distance error. Overall, the results demonstrate the efficiency of AttUnet and TransAttUnet with dice scores of 88.62% and 89.28%, and accuracy of 88.25% and 86.30%, respectively. The current results demonstrate the feasibility of deep learning methods for LAA segmentation in 2D ultrasound.Clinical relevance- Our results proved the clinical potential of deep neural networks for the LAA anatomical analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10340937 | DOI Listing |
Anal Methods
January 2025
School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Oncology, Dongying District People's Hospital 333 Jinan Road, Dongying District, Dongying, Shandong, China.
The use of routine adjuvant radiotherapy (RT) after breast-conserving surgery (BCS) is controversial in elderly patients with early-stage breast cancer (EBC). This study aimed to evaluate the efficacy of adjuvant RT for elderly EBC patients using deep learning (DL) to personalize treatment plans. Five distinct DL models were developed to generate personalized treatment recommendations.
View Article and Find Full Text PDFHeart Rhythm O2
December 2024
Cardiology Department, Bichat Hospital, Paris, France.
Background: Detection of atrial tachyarrhythmias (ATA) on long-term electrocardiogram (ECG) recordings is a prerequisite to reduce ATA-related adverse events. However, the burden of editing massive ECG data is not sustainable. Deep learning (DL) algorithms provide improved performances on resting ECG databases.
View Article and Find Full Text PDFVariant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.
View Article and Find Full Text PDFAlphaFold2 (AF2), a deep-learning based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!