Transcutaneous spinal electrical stimulation (tSCS) is a non-invasive neuromodulation approach using a low intensity direct current. Recent developments in the technique have opened the possibility that tSCS can help restore motor function after spinal cord injury (SCI). However, the exact mechanism of action tSCS has on the spinal circuits is still unknown. Due to the complexity of experimental synthesis in a human model to delineate the mechanisms, models that link the stimulation paradigm and circuit behaviors are advantageous. Thus, this study aims to simulate the underlying changes in motor circuit firing rates in response to external stimuli induced by tSCS. Serial stimulations combining a high-fidelity finite element model with the human torso and spinal cord with a lumped motor neuron model is constructed. The parameters for both components of the model were derived from previous studies. We focused our analysis on a lumped motor neuron model that describes sustained firing behavior of the motor neuron driven primarily by persistent inward current (PIC), a signature behavior of the motor neuron after SCI. Modulation of the PIC behaviors was achieved by stimulating voltage-dependent calcium and sodium channels in the dendrite using a tSCS-induced electric field (E-field) expressed at different a spatial locations of the motor neuron in the gray matter. The PIC behaviors of spinal motor neurons in the left ventral horn were suppressed, while for the most part invariant in the right ventral horn. These initial simulations will provide a steppingstone for future examinations that incorporate additional neuronal models of inhibitory and excitatory interneurons to access the circuit-level effect of spinal stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10340056 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFCell Rep
January 2025
Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA. Electronic address:
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation.
View Article and Find Full Text PDFCells
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA.
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.
Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults
Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!