Function electrical stimulation (FES) is recommended as one of the effective methods for rehabilitation of motor function after stroke. There are two forms to deliver electrical stimulation to induce muscle contraction: Bipolar electrode configuration with two electrodes of the same size, and monopolar electrode configuration with a bigger electrode as an indifferent electrode and a smaller one as an active electrode. The purpose of this study is to compare the two kinds of configuration on biceps brachii in terms of induced muscle contraction force and muscle fatigue. In the experiment, electrical stimulation was applied on biceps brachii muscles of the right arm. Isometric contraction was induced by fixing the elbow joint during the stimulation. The experimental results showed that the induced contraction force was bigger using monopolar electrode configuration with the indifferent electrode on the antagonist muscle, and there was no significant difference in muscle fatigue between the configurations. Monopolar electrode configuration with the indifferent electrode on the antagonist muscle was suggested as the most effective method for FES on biceps brachii.Clinical Relevance- This study establishes an effective electrode configuration for FES on biceps brachii.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340018DOI Listing

Publication Analysis

Top Keywords

electrode configuration
20
monopolar electrode
16
biceps brachii
16
fes biceps
12
electrical stimulation
12
indifferent electrode
12
electrode
11
muscle contraction
8
contraction force
8
muscle fatigue
8

Similar Publications

Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.

View Article and Find Full Text PDF

Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte.

Angew Chem Int Ed Engl

January 2025

Aarhus University, iNANO, Department of Chemistry, Langelandsgade 140, 8000, Aarhus C, DENMARK.

Solid-state batteries created from abundant elements, such as calcium, may pave the way for cheaper and safer electrical energy storage. Here we report a new type of solid calcium hydridoborate electrolyte, Ca(BH4)2·2NH2CH3, with a high ionic conductivity of σ(Ca2+) ~ 10-5 S cm-1 at T = 70 °C, which is assigned to a relatively open and flexible structure with apolar moieties and weak dihydrogen bonds that facilitate migration of Ca2+ ions in the solid state. The compound display a low electronic conductivity, providing an ionic transport number close to unity (tion = 0.

View Article and Find Full Text PDF

This paper describes the production and high-current-density hydrogen evolution reaction (HER) performance in the whole pH range (from acidic to basic pH values) of self-supported α-MoB/β-MoB ceramic electrodes, aiming for use in industrial electrocatalytic water splitting. Tape-casting and phase-inversion process, followed by sintering, were employed to synthesize self-supported β-MoB ceramic electrodes, which exhibited well arranged large finger-like pores, providing numerous active sites and channels for electrolyte entry and hydrogen release. The reaction between β-MoB and the sintering aid of MoO produces α-MoB/β-MoB heterojunctions, which significantly improve the electrocatalytic performance.

View Article and Find Full Text PDF

Objectives: Bimodal cochlear implant (CI) users vary in speech recognition outcomes. This variability may be influenced partly by the CI and contralateral hearing aid (HA) programming procedures, which can result in mismatches in latency and frequency. We assessed the performance of bimodal listeners when latency mismatches were corrected and analyzed how frequency mismatches influenced outcomes.

View Article and Find Full Text PDF

Local field potential (LFP) recordings using chronically implanted sensing-enabled stimulators are a powerful tool for indexing symptom presence and severity in neurological and neuropsychiatric disorders, and for enhancing our neurophysiological understanding of brain processes. LFPs have gained interest as input signals for closed-loop deep brain stimulation (DBS) and can be used to inform DBS parameter selection. LFP recordings using chronically implanted sensing-enabled stimulators have various implementational challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!