A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hand Grasp Motion Intention Recognition Based on High-Density Electromyography in Chronic Stroke Patients. | LitMetric

Stroke is a debilitating condition that leads to a loss of motor function, inability to perform daily life activities, and ultimately worsening quality of life. Robot-based rehabilitation is a more effective method than conventional rehabilitation but needs to accurately recognize the patient's intention so that the robot can assist the patient's voluntary motion. This study focuses on recognizing hand grasp motion intention using high-density electromyography (HD-EMG) in patients with chronic stroke. The study was conducted with three chronic stroke patients and involved recording HD-EMG signals from the muscles involved in hand grasp motions. The adaptive onset detection algorithm was used to accurately identify the start of hand grasp motions accurately, and a convolutional neural network (CNN) was trained to classify the HD-EMG signals into one of four grasping motions. The average true positive and false positive rates of the grasp onset detection on three subjects were 91.6% and 9.8%, respectively, and the trained CNN classified the grasping motion with an average accuracy of 76.3%. The results showed that using HD-EMG can provide accurate hand grasp motion intention recognition in chronic stroke patients, highlighting the potential for effective robot-based rehabilitation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340346DOI Listing

Publication Analysis

Top Keywords

hand grasp
20
chronic stroke
16
grasp motion
12
motion intention
12
stroke patients
12
intention recognition
8
high-density electromyography
8
robot-based rehabilitation
8
hd-emg signals
8
grasp motions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!