In the present work, we implemented a computational framework of in vivo gold nanorod (GNR)-enhanced photothermal therapy (PTT) for tumor treatment. The temperature-dependent thermophysical properties of biological tissue and the optical properties of both GNRs and the biological media were included. The latter were modulated during the treatment simulation to account for their variation, from the native to the coagulated state. The contribution of tissue injury-dependent blood perfusion was also considered. The developed model allowed for the estimation of temperature distribution during the photothermal procedure at different procedural settings and amounts of GNRs embedded in the tumor region (i.e., 12.5 μg, 25 μg, and 50 μg). Furthermore, the influence of GNRs on thermal injury, estimated with different damage models, was assessed. The inclusion of GNRs in the tumor entailed an increment of maximum tissue temperature, and faster heating kinetics, as witnessed by the lower time needed to reach complete thermal damage at the tumor center. The percentage of tumor thermal damage evaluated at the end of the simulated treatment was 48%, 69%, and 90%, for PTT in the presence of 12.5 μg, 25 μg, and 50 μg of GNRs, respectively.Clinical Relevance-This establishes that simulation-based tools, modeling the tissue properties variation during the photothermal treatment, can serve as promising preplanning platforms for nanoparticle-assisted light therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340647DOI Listing

Publication Analysis

Top Keywords

μg μg
16
thermal damage
12
photothermal therapy
8
125 μg
8
μg
6
tissue
5
thermal
5
tumor
5
gnrs
5
theoretical estimation
4

Similar Publications

Background: Untreated low back pain (LBP) in older adults can lead to disability and development of chronicity. Due to the potential development of medical comorbidities and negative risks associated with pharmacological use, chronic LBP management for older adults requires a responsive approach.

Methods: The objective of this study is to evaluate the probability of (1) opioid prescription receipt and (2) opioid-sedative coprescription, in a sample of military-service-connected patients enrolled in the Veterans Health Administration (VHA) or TRICARE, ages 30-85 years, receiving care in three systems: VHA, Military Health System (MHS), and nonfederal (civilian) healthcare facilities.

View Article and Find Full Text PDF

Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.

View Article and Find Full Text PDF

Aims: In Europe, the European Medicines Agency (EMA) has an accelerated pathway to prioritize approval of medicines. Approved drugs are then assessed by Health Technology Assessment (HTA) bodies before being made available to patients. The aim of the study was to evaluate the characteristics of the drugs admitted to the EMA accelerated assessment (AA) and scrutinize the downstream HTA procedures regarding these medicines and the final assessment regarding added therapeutic value (ATV).

View Article and Find Full Text PDF

Correlation between polymorphisms of gene and renal injury in patients with type 2 diabetes mellitus.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha 410013.

Objectives: Genetic factors play an important role in the pathogenesis of diabetic kidney disease (DKD). Studies have shown that gene polymorphism is associated with the pathogenesis of type 2 diabetes mellitus (T2DM), but its role in DKD remains unclear. This study aims to analyze the distribution of alleles and genotypes of gene in patients with T2DM, and investigate the association between genetic polymorphism and DKD susceptibility in T2DM patients, which may provide new ideas for the pathogenesis of DKD.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!