Magnetic Resonance (MR) images suffer from various types of artifacts due to motion, spatial resolution, and under-sampling. Conventional deep learning methods deal with removing a specific type of artifact, leading to separately trained models for each artifact type that lack the shared knowledge generalizable across artifacts. Moreover, training a model for each type and amount of artifact is a tedious process that consumes more training time and storage of models. On the other hand, the shared knowledge learned by jointly training the model on multiple artifacts might be inadequate to generalize under deviations in the types and amounts of artifacts. Model-agnostic meta-learning (MAML), a nested bi-level optimization framework is a promising technique to learn common knowledge across artifacts in the outer level of optimization, and artifact-specific restoration in the inner level. We propose curriculum-MAML (CMAML), a learning process that integrates MAML with curriculum learning to impart the knowledge of variable artifact complexity to adaptively learn restoration of multiple artifacts during training. Comparative studies against Stochastic Gradient Descent and MAML, using two cardiac datasets reveal that CMAML exhibits (i) better generalization with improved PSNR for 83% of unseen types and amounts of artifacts and improved SSIM in all cases, and (ii) better artifact suppression in 4 out of 5 cases of composite artifacts (scans with multiple artifacts).Clinical relevance- Our results show that CMAML has the potential to minimize the number of artifact-specific models; which is essential to deploy deep learning models for clinical use. Furthermore, we have also taken another practical scenario of an image affected by multiple artifacts and show that our method performs better in 80% of cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10341123 | DOI Listing |
Appl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan, 81 562-93-2476, 81 562-93-3079.
Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!