Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In surgery-based renal cancer treatment, one of the most essential tasks is the three-dimensional (3D) kidney parsing on computed tomography angiography (CTA) images. In this paper, we propose an end-to-end convolutional neural network-based framework to segment multiple renal structures, including kidneys, kidney tumors, arteries, and veins from arterial-phase CT images. Our method consists of two collaborative modules: First, we propose an encoding-decoding network, named Multi-Branch Dilated Convolutional Network (MBD-Net), consisting of residual, hybrid dilated convolutional, and reduced-dimensional convolutional structures, which improves the feature extraction ability with relatively fewer network parameters. Given that renal tumors and cysts have confusing geometric structures, we also design the Cyst Discriminator to effectively distinguish tumors from cysts without labeling information via gray-scale curves and radiographic features. We have quantitatively evaluated our approach on a publicly available dataset from MICCAI 2022 Kidney Parsing for Renal Cancer Treatment Challenge (KiPA2022), with mean Dice similarity coefficient (DSC) as 96.18%, 90.99%, 88.66% and 80.35% for the kidneys, kidney tumors, arteries, and veins respectively, winning the stable and top performance in the challenge.Clinical relevance-The proposed CNN-Based framework can automatically segment 3D kidneys, renal tumors, arteries, and veins for kidney parsing techniques, benefiting surgery-based renal cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC40787.2023.10341054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!