This paper presents a study on the use of impedance-based control of a 6-degree-of-freedom robot for upper-limb rehabilitation of patients with neuromotor deficits. The control strategy is based on impedance and does not require external force sensors at the end-effector for implementation. The experimental setup involved using the control algorithm to move the robot to a desired position, follow a desired trajectory while being moved out of the trajectory by the user, and reproduce three different rehabilitation exercises (passive, isometric, and ADL). The results suggest that the parameters of the control strategy can be adjusted to set the robot's compliance and support force according to the patient's needs. Ultimately, the study concluded that the proposed control strategy can serve as a foundation for rehabilitation robots, which could potentially improve access to continued upper-limb rehabilitation for stroke patients and reduce the number of healthcare professionals required per patient.Clinical Relevance- This paper proposes a human-robot interaction control scheme to be used in a robotic rehabilitation tool, with the goal of assisting both clinicians and patients during the rehabilitation exercises and ultimately reducing the load on healthcare system. This platform can be potentially used in telemedicine solutions for upper-limb rehabilitation of a wide range of patients with neuromotor deficits such as stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340328DOI Listing

Publication Analysis

Top Keywords

upper-limb rehabilitation
16
patients neuromotor
12
neuromotor deficits
12
control strategy
12
rehabilitation patients
8
impedance-based control
8
rehabilitation exercises
8
control
7
rehabilitation
7
patients
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!