Vocal folds motility evaluation is paramount in both the assessment of functional deficits and in the accurate staging of neoplastic disease of the glottis. Diagnostic endoscopy, and in particular videoendoscopy, is nowadays the method through which the motility is estimated. The clinical diagnosis, however, relies on the examination of the videoendoscopic frames, which is a subjective and professional-dependent task. Hence, a more rigorous, objective, reliable, and repeatable method is needed. To support clinicians, this paper proposes a machine learning (ML) approach for vocal cords motility classification. From the endoscopic videos of 186 patients with both vocal cords preserved motility and fixation, a dataset of 558 images relative to the two classes was extracted. Successively, a number of features was retrieved from the images and used to train and test four well-grounded ML classifiers. From test results, the best performance was achieved using XGBoost, with precision = 0.82, recall = 0.82, F1 score = 0.82, and accuracy = 0.82. After comparing the most relevant ML models, we believe that this approach could provide precise and reliable support to clinical evaluation.Clinical Relevance- This research represents an important advancement in the state-of-the-art of computer-assisted otolaryngology, to develop an effective tool for motility assessment in the clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340017DOI Listing

Publication Analysis

Top Keywords

vocal folds
8
endoscopic videos
8
machine learning
8
vocal cords
8
motility
5
classifying vocal
4
folds fixation
4
fixation endoscopic
4
videos machine
4
learning vocal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!