Dynamical flexible inference of nonlinear latent factors and structures in neural population activity.

Nat Biomed Eng

Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.

Published: January 2024

Modelling the spatiotemporal dynamics in the activity of neural populations while also enabling their flexible inference is hindered by the complexity and noisiness of neural observations. Here we show that the lower-dimensional nonlinear latent factors and latent structures can be computationally modelled in a manner that allows for flexible inference causally, non-causally and in the presence of missing neural observations. To enable flexible inference, we developed a neural network that separates the model into jointly trained manifold and dynamic latent factors such that nonlinearity is captured through the manifold factors and the dynamics can be modelled in tractable linear form on this nonlinear manifold. We show that the model, which we named 'DFINE' (for 'dynamical flexible inference for nonlinear embeddings') achieves flexible inference in simulations of nonlinear dynamics and across neural datasets representing a diversity of brain regions and behaviours. Compared with earlier neural-network models, DFINE enables flexible inference, better predicts neural activity and behaviour, and better captures the latent neural manifold structure. DFINE may advance the development of neurotechnology and investigations in neuroscience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735406PMC
http://dx.doi.org/10.1038/s41551-023-01106-1DOI Listing

Publication Analysis

Top Keywords

flexible inference
28
latent factors
12
inference nonlinear
8
nonlinear latent
8
neural
8
neural observations
8
inference
7
flexible
6
nonlinear
5
latent
5

Similar Publications

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

MixDeR: A SNP mixture deconvolution workflow for forensic genetic genealogy.

Forensic Sci Int Genet

January 2025

National Bioforensic Analysis Center, National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute for the US. Department of Homeland Security Science and Technology Directorate, 8300 Research Plaza, Fort Detrick, MD 21702, USA. Electronic address:

The generation of forensic DNA profiles consisting of single nucleotide polymorphisms (SNPs) is now being facilitated by wider adoption of next-generation sequencing (NGS) methods in casework laboratories. At the same time, and in part because of this advance, there is an intense focus on the generation of SNP profiles from evidentiary specimens for so-called forensic or investigative genetic genealogy (FGG or IGG) applications. However, FGG methods are constrained by the algorithms for genealogical database searches, which were designed for use with single-source profiles, and the fact that many forensic samples are mixtures.

View Article and Find Full Text PDF

Physics-informed Neural Implicit Flow neural network for parametric PDEs.

Neural Netw

January 2025

Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071, China; Intelligent Game and Decision Laboratory, China.

The Physics-informed Neural Network (PINN) has been a popular method for solving partial differential equations (PDEs) due to its flexibility. However, PINN still faces challenges in characterizing spatio-temporal correlations when solving parametric PDEs due to network limitations. To address this issue, we propose a Physics-Informed Neural Implicit Flow (PINIF) framework, which enables a meshless low-rank representation of the parametric spatio-temporal field based on the expressiveness of the Neural Implicit Flow (NIF), enabling a meshless low-rank representation.

View Article and Find Full Text PDF

This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.

View Article and Find Full Text PDF

The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!