Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162325 | PMC |
http://dx.doi.org/10.1038/s41551-023-01131-0 | DOI Listing |
Sarcoma
December 2024
Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Prognosis remains poor for patients with relapsed or refractory Ewing sarcoma, with limited treatment options after first-line therapy. Oral etoposide has efficacy in the paediatric setting; however, data are limited in adults. A retrospective analysis was conducted on 33 patients with relapsed or refractory Ewing sarcoma who completed at least one cycle of oral etoposide at the Peter MacCallum Cancer Centre from 2005 to 2020.
View Article and Find Full Text PDFNat Prod Res
December 2024
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
T-cell acute lymphoblastic leukaemia (T-ALL) is a common childhood malignant tumour, which has poor prognosis and high recurrence rate. Ginsenoside Rh2 (GRh2), a bioactive ingredient of has significant anti-tumour effect. In this study, we found that gene expressions of Jurkat cells were significantly changed in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signalling pathways after 35 µm GRh2 treatment, involving in JUN, PIEN, AKT3 and MAPK8IP2.
View Article and Find Full Text PDFUnited European Gastroenterol J
December 2024
Institute of Clinical Molecular Biology and Clinic for Internal Medicine, Kiel University, Kiel, Germany.
Background: Vedolizumab is approved for the treatment of moderately to severely active Crohn's disease (CD). Real-world evidence is essential for understanding the effectiveness and benefit-risk profile of vedolizumab outside clinical trial settings.
Objective: To identify, systematically review and assess the real-world effectiveness and treatment persistence of vedolizumab in patients with CD, particularly over long-term follow-up periods and among populations with differing treatment experience, and to compare with the treatment persistence of anti-tumour necrosis factor (TNF)-α treatment.
Transl Cancer Res
November 2024
Medical Oncology Centre, Saalfeld, Germany.
Non-small cell lung cancer (NSCLC) represents over 80% of lung cancer cases and has a high mortality worldwide, however, targeting common epidermal growth-factor receptor (EGFR) alterations (i.e., del19, L858R) has provided a paradigm shift in the treatment of NSCLC.
View Article and Find Full Text PDFJ Hematol Oncol
December 2024
Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, San Paolo N°15 Street, 00146, Rome, Italy.
Sarcomas are rare, mesenchymal tumors, representing about 10-15% of all childhood cancers. GD2 is a suitable target for chimeric antigen receptor (CAR) T-cell therapy due to its overexpression in several solid tumors. In this preclinical study, we investigated the potential use of iCasp9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!