In this study, miniaturized cruciform biaxial tensile specimens were optimized by finite element simulation software Ansys to vary five geometric parameters. The optimized specimens were utilized to characterize the biaxial tensile properties of 316L stainless steel fabricated through selective laser melting (SLM), with the two loading directions being vertical (X) and parallel (Y) to the building direction. It was discovered that at load ratios of 4:2 and 2:4, the yield strengths along X and Y orientations reached their respective maxima. By comparing the experimentally obtained yield loci against predictions by theoretical criteria including Mises, Hill48 and Hosford, it was found that the Hill48 anisotropic criterion corresponded most closely with the experimental results, while the other two criteria exhibited considerably larger deviations. Therefore, Hill48 was concluded to most accurately describe the yielding behaviors of SLM 316L under complex loading conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713539PMC
http://dx.doi.org/10.1038/s41598-023-49482-7DOI Listing

Publication Analysis

Top Keywords

biaxial tensile
12
stainless steel
8
selective laser
8
laser melting
8
tensile behavior
4
behavior stainless
4
steel 316l
4
316l manufactured
4
manufactured selective
4
melting study
4

Similar Publications

Recent studies have attempted to characterize the layer-specific mechanical and microstructural properties of the aortic tissues in either normal or pathological state to understand its structural-mechanical property relationships. However, layer-specific tissue mechanics and compositions of normal and dissected ascending aortas have not been thoroughly compared with a statistical conclusion obtained. Eighteen ascending aortic specimens were harvested from 13 patients with type A aortic dissection and 5 donors without aortic diseases, with each specimen further excised to obtain three tissue samples including an intact wall, an intima-media layer and an adventitia layer.

View Article and Find Full Text PDF

Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.

View Article and Find Full Text PDF

Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs monolayer under different biaxial tensile strains based on the state-of-the-art electron-phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs monolayers.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!