Dengue is expanding globally, but how dengue emergence is shaped locally by interactions between climatic and socio-environmental factors is not well understood. Here, we investigate the drivers of dengue incidence and emergence in Vietnam, through analysing 23 years of district-level case data spanning a period of significant socioeconomic change (1998-2020). We show that urban infrastructure factors (sanitation, water supply, long-term urban growth) predict local spatial patterns of dengue incidence, while human mobility is a more influential driver in subtropical northern regions than the endemic south. Temperature is the dominant factor shaping dengue's distribution and dynamics, and using long-term reanalysis temperature data we show that warming since 1950 has expanded transmission risk throughout Vietnam, and most strongly in current dengue emergence hotspots (e.g., southern central regions, Ha Noi). In contrast, effects of hydrometeorology are complex, multi-scalar and dependent on local context: risk increases under either short-term precipitation excess or long-term drought, but improvements in water supply mitigate drought-associated risks except under extreme conditions. Our findings challenge the assumption that dengue is an urban disease, instead suggesting that incidence peaks in transitional landscapes with intermediate infrastructure provision, and provide evidence that interactions between recent climate change and mobility are contributing to dengue's expansion throughout Vietnam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713571PMC
http://dx.doi.org/10.1038/s41467-023-43954-0DOI Listing

Publication Analysis

Top Keywords

dengue emergence
12
interactions climate
8
climate change
8
urban infrastructure
8
emergence vietnam
8
dengue incidence
8
water supply
8
dengue
7
urban
4
change urban
4

Similar Publications

Background: Aedes aegypti transmits various arthropod-borne diseases such as dengue, posing a significant burden to public health in tropical and subtropical regions. Pyrethroid-based control strategies are effective in managing this vector; however, the development of insecticide resistance has hindered these efforts. Hence, long-term monitoring of insecticide resistance in mosquito populations is crucial for effective vector and disease control.

View Article and Find Full Text PDF

The 2023 Dengue Outbreak in Lombardy, Italy: A One-Health Perspective.

Travel Med Infect Dis

January 2025

General Directorate of Welfare, Regione Lombardia, Milano, Italy.

Introduction: Here we reported the virological, entomological and epidemiological characteristics of the large autochthonous outbreak of dengue (DENV) occurred in a small village of the Lombardy region (Northern Italy) during summer 2023.

Methods: After the diagnosis of the first autochthonous case on 18 August 2023, public health measures, including epidemiological investigation and vector control measures, were carried out. A serological screening for DENV antibodies detection was offered to the population.

View Article and Find Full Text PDF

Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health.

J Biomed Sci

January 2025

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.

Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.

View Article and Find Full Text PDF

Meeting summary: Global vaccine and immunization research forum, 2023.

Vaccine

January 2025

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA. Electronic address:

At the 2023 Global Vaccine and Immunization Research Forum (GVIRF), researchers from around the world gathered in the Republic of Korea to discuss advances and opportunities in vaccines and immunization. Many stakeholders are applying the lessons of Covid-19 to future emergencies, by advancing early-stage development of prototype vaccines to accelerate response to the next emerging infectious disease, and by building regional vaccine research, development, and manufacturing capacity to speed equitable access to vaccines in the next emergency. Recent vaccine licensures include: respiratory syncytial virus vaccines, both for the elderly and to protect infants through maternal immunization; a new dengue virus vaccine; and licensure of Covid-19 vaccines previously marketed under emergency use authorizations.

View Article and Find Full Text PDF

Genomics-based timely detection of dengue virus type I genotypes I and V in Uruguay.

Heliyon

November 2024

Laboratorio de Virus Emergentes/reemergentes. Unidad de Virología, Departamento de Laboratorios de Salud Pública, Portugal.

This study details a genomics-based approach for the early detection of mosquito-borne pathogens, marked by Uruguay's first ever complete genomic sequencing of Dengue Virus type I genotypes I and V. This pioneering effort has facilitated the prompt identification of these genotypes within the country, enabling Uruguayan public health authorities to develop timely and effective response strategies. Further integrated into this approach is a climate-driven suitability measure, closely associated with Dengue case reports and indicative of the local climate's role in the virus's transmission in the country within the changing climate context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!