Covalent organic frameworks show great potential in gas adsorption/separation, biomedicine, device, sensing, and printing arenas. However, covalent organic frameworks are generally not dispersible in common solvents resulting in the poor processability, which severely obstruct their application in practice. In this study, we develop a convenient top-down process for fabricating solution-processable covalent organic frameworks by introducing intermolecular hydrogen bonding and π-π interactions from ionic liquids. The bulk powders of imine-linked, azine-linked, and β-ketoenamine linked covalent organic frameworks can be dispersed homogeneously in optimal ionic liquid 1-methyl-3-octylimidazolium bromide after heat treatment. The resulting high-concentration colloids are utilized to create the covalent organic framework inks that can be directly printed onto the surface. Molecular dynamics simulations and the quantum mechanical calculations suggest that C‒H···π and π-π interaction between ionic liquid cations and covalent organic frameworks may promote the formation of colloidal solution. These findings offer a roadmap for preparing solution-processable covalent organic frameworks, enabling their practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713689PMC
http://dx.doi.org/10.1038/s41467-023-43905-9DOI Listing

Publication Analysis

Top Keywords

covalent organic
32
organic frameworks
28
solution-processable covalent
12
π-π interaction
8
covalent
8
organic
8
ionic liquid
8
frameworks
7
hydrogen-bonding π-π
4
interaction promoted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!