Dependence of Exciton Binding Energy on Bandgap of Organic Semiconductors.

J Phys Chem Lett

Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

Published: December 2023

Strongly bound excitons crucially affect the operation of organic optoelectronic devices. Nevertheless, precise experimental data on the exciton binding energy of organic semiconductors are lacking. In this study, we determine the exciton binding energy as the difference between the optical and transport bandgaps with a precision of 0.1 eV. In particular, electron affinities with a precision higher than 0.05 eV determined by low-energy inverse photoelectron spectroscopy allow us to determine the transport gap and the exciton binding energies with such high precision. Through a systematic comparison of a wide range of organic semiconductors, including 42 organic solar cell materials (15 nonfullerene acceptors, 4 fullerene acceptors, 13 low-bandgap polymers, 7 organic light-emitting diode materials, and 3 crystalline materials), we found that the exciton binding energy is one-quarter of the transport gap regardless of the materials. We interpret this unexpected relation from a hydrogen atom-like model, i.e., the quantized energy levels in a Coulomb potential between the positive and the negative charges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749482PMC
http://dx.doi.org/10.1021/acs.jpclett.3c02863DOI Listing

Publication Analysis

Top Keywords

exciton binding
20
binding energy
16
organic semiconductors
12
transport gap
8
organic
6
binding
5
energy
5
dependence exciton
4
energy bandgap
4
bandgap organic
4

Similar Publications

Using the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Theoretical insights into spacer molecule design to tune stability, dielectric, and exciton properties in 2D perovskites.

Nanoscale

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China.

Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.

View Article and Find Full Text PDF

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!