Emerging insight of whole genome sequencing coupled with protein structure prediction into the pyrazinamide-resistance signature of Mycobacterium tuberculosis.

Int J Antimicrob Agents

Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Centre, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Electronic address:

Published: April 2024

AI Article Synopsis

Article Abstract

Pyrazinamide (PZA) is considered to be a pivotal drug to shorten the treatment of both drug-susceptible and drug-resistant tuberculosis, but its use is challenged by the reliability of drug-susceptibility testing (DST). PZA resistance in Mycobacterium tuberculosis (MTB) is relevant to the amino acid substitution of pyrazinamidase that is responsible for the conversion of PZA to active pyrazinoic acid (POA). The single nucleotide variants (SNVs) within ribosomal protein S1 (rpsA) or aspartate decarboxylase (panD), the binding targets of POA, has been reported to drive the PZA-resistance signature of MTB. In this study, whole genome sequencing (WGS) was used to identify SNVs within the pncA, rpsA and panD genes in 100 clinical MTB isolates associated with DST results for PZA. The potential influence of high-confidence, interim-confidence or emerging variants on the interplay between target genes and PZA or POA was simulated computationally, and predicted with a protein structure modelling approach. The DST results showed weak agreement with the identification of high-confidence variants within the pncA gene (Cohen's kappa coefficient=0.58), the analytic results of WGS coupled with protein structure modelling on pncA mutants (Cohen's kappa coefficient=0.524) or related genes (Cohen's kappa coefficient=0.504). Taken together, these results suggest the practicable application of a genotypic-coupled bioinformatic approach to manage PZA-containing regimens for patients with MTB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2023.107053DOI Listing

Publication Analysis

Top Keywords

protein structure
12
cohen's kappa
12
genome sequencing
8
coupled protein
8
mycobacterium tuberculosis
8
dst pza
8
structure modelling
8
pza
5
emerging insight
4
insight genome
4

Similar Publications

PDA/PMMA blend membrane utilized for the selective adsorption and separation of heavy metal ions.

Chemistry

December 2024

Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA.

The detrimental effects of heavy metal aqueous pollution are attracting people's attention increasingly. Membrane separation technology plays a pivotal role in the treatment of aqueous pollution due to its low energy consumption and excellent separation effect. Inspired by the strong adhesion of heavy metal ions by the dopamine in mussel protein, we have fabricated the 5%, 10%, 20% and 30% proportion of polydopamine (PDA)/Polymethyl methacrylate (PMMA) blend membranes with dopamine structure by solvent-induced phase conversion.

View Article and Find Full Text PDF

The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that exert antimicrobial activity via Lipid II binding.

View Article and Find Full Text PDF

The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations.

View Article and Find Full Text PDF

Peptide stapling has emerged as a versatile approach in drug discovery to reinforce secondary structure elements especially α-helices and improve properties of linear bioactive peptides. Inspired by the prevalence of arginine in protein-protein and protein-DNA interfaces, we investigated guanidinium-stapling as a means to constrain helical peptides. Guanidinium stapling was readily achieved on solid support, utilizing two orthogonally protected lysine or unatural α-amino acid residues with an amino function.

View Article and Find Full Text PDF

Polycyclic tetramate macrolactams (PoTeMs) represent a growing class of bioactive natural products that are derived from a common tetramate polyene precursor, lysobacterene A, produced by an unusual bacterial iterative polyketide synthase (PKS) / non-ribosomal peptide synthetase (NRPS). The structural and functional diversity of PoTeMs is biosynthetically elaborated from lysobacterene A by pathway-specific cyclizing and modifying enzymes. This results in diverse core structure decoration and cyclization patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!