Background Context: Transcranial muscle motor evoked potentials (Tc-mMEPs), a key component of intraoperative neurophysiologic monitoring (IONM), effectively reflect the changes in corticospinal tract integrity and are closely related to the occurrence of the postoperative motor deficit (PMD). Most institutions have applied a specified (fixed) alarm criterion for the heterogeneous groups in terms of etiologies or lesion location. However, given the high risk of PMD in ossification of the posterior longitudinal ligament (OPLL) surgery, it is essential to determine a tailored cutoff value for IONM.

Purpose: We aimed to establish the intraoperative cutoff value of Tc-mMEPs reduction for predicting PMD in OPLL according to lesion levels.

Design: Retrospective analysis using a review of electrical medical records.

Patient Sample: In this study, we included 126 patients diagnosed with OPLL, who underwent surgery and IONM.

Outcome Measures: The occurrence of PMD immediately and 1 year after operation, as well as the decrement of intraoperative Tc-mMEPs amplitude.

Methods: We analyzed OPLL surgery outcomes using Tc-mMEPs monitoring. Limbs with acceptable baseline Tc-mMEPs in the tibialis anterior or abductor hallucis were included in the final set. PMD was defined as a ≥1 decrease in Medical Research Council score in the legs, and it was evaluated immediately and 1year after operation. The reduction ratios of Tc-mMEPs amplitude compared with baseline value were calculated at the two time points: the maximal decrement during surgery and at the end of surgery. Receiver operating characteristic curve analysis was used to determine the cutoff value of Tc-mMEPs amplitude decrement for predicting PMDs.

Results: In total, 203 limbs from 102 patients with cervical OPLL and 42 limbs from 24 patients with thoracic OPLL were included. PMD developed more frequently in thoracic lesions than in cervical lesions (immediate, 9.52% vs 2.46%; 1 year, 4.76% vs 0.99%). The Tc-mMEPs amplitude cutoff point at the end of surgery for PMD (both immediate and 1-year) was a decrease of 93% in cervical and 50% in thoracic OPLL surgeries. Similarly, the Tc-mMEPs amplitude cutoff point at the maximal decrement during surgery for PMD (both immediate and 1 year) was a reduction of 97% in cervical and 85% in thoracic OPLL surgeries.

Conclusions: The thoracic lesion exhibited a lower cutoff value than the cervical lesion for both immediate and long-term persistent PMD in OPLL surgery (Tc-mMEPs at the end of surgery measuring 93% vs 50%; and Tc-mMEPs at the maximal decrement measuring 97% vs 85% for cervical and thoracic lesions, respectively). To enhance the reliability of monitoring, considering the application of tailored alarm criteria for Tc-mMEPs changes based on lesion location in OPLL could be beneficial.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2023.11.022DOI Listing

Publication Analysis

Top Keywords

tc-mmeps amplitude
16
tc-mmeps
12
opll surgery
12
maximal decrement
12
thoracic opll
12
surgery
10
opll
10
pmd
9
motor evoked
8
evoked potentials
8

Similar Publications

Background Context: Transcranial muscle motor evoked potentials (Tc-mMEPs), a key component of intraoperative neurophysiologic monitoring (IONM), effectively reflect the changes in corticospinal tract integrity and are closely related to the occurrence of the postoperative motor deficit (PMD). Most institutions have applied a specified (fixed) alarm criterion for the heterogeneous groups in terms of etiologies or lesion location. However, given the high risk of PMD in ossification of the posterior longitudinal ligament (OPLL) surgery, it is essential to determine a tailored cutoff value for IONM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!