Hemodialysis (HD) using an HD catheter is performed widely on renal failure patients. The catheter was evaluated using the recirculation ratio in pre-clinical status, which is a crucial index indicating its performance. However, pre-clinical in-vivo experiments have limitations: high cost, and ethical issues. Hence, computational and in-vitro methods have been developed as alternatives. However, computational methods require fluid dynamic knowledge, whereas in-vitro experiments are complicated and expensive. In this study, we developed a pulsatile flow generator to mimic blood flow achieving cost effectiveness and user convenience. The device used iterative learning control, achieving blood flow in the superior and inferior vena cava within a 3.3% error. Furthermore, the recirculation ratios were measured based on two insertion directions and two different external pipe materials to evaluate the catheter regarding patients' posture and blood vessel stiffness. The results provide a better understanding of cardiovascular device performance without complicated and costly pre-clinical tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0087584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!