To evaluate the signal quality of dry MXene-based electrode arrays (also termed 'MXtrodes') for electroencephalographic (EEG) recordings where gelled Ag/AgCl electrodes are a standard.We placed 4 × 4 MXtrode arrays and gelled Ag/AgCl electrodes on different scalp locations. The scalp was cleaned with alcohol and rewetted with saline before application. We recorded from both electrode types simultaneously while participants performed a vigilance task.The root mean squared amplitude of MXtrodes was slightly higher than that of Ag/AgCl electrodes (.24-1.94 uV). Most MXtrode pairs had slightly lower broadband spectral coherence (.05 to .1 dB) and Delta- and Theta-band timeseries correlation (.05 to .1 units) compared to the Ag/AgCl pair (< .001). However, the magnitude of correlation and coherence was high across both electrode types. Beta-band timeseries correlation and spectral coherence were higher between neighboring MXtrodes in the array (.81 to .84 units) than between any other pair (.70 to .75 units). This result suggests the close spacing of the nearest MXtrodes (3 mm) more densely sampled high spatial-frequency topographies. Event-related potentials were more similar between MXtrodes (⩾ .95) than equally spaced Ag/AgCl electrodes (⩽ .77,< .001). Dry MXtrode impedance (= 5.15 KΩ cm) was higher and more variable than gelled Ag/AgCl electrodes (= 1.21 KΩ cm,< .001). EEG was also recorded on the scalp across diverse hair types.Dry MXene-based electrodes record EEG at a quality comparable to conventional gelled Ag/AgCl while requiring minimal scalp preparation and no gel. MXtrodes can record independent signals at a spatial density four times higher than conventional electrodes, including through hair, thus opening novel opportunities for research and clinical applications that could benefit from dry and higher-density configurations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788783 | PMC |
http://dx.doi.org/10.1088/1741-2552/ad141e | DOI Listing |
Adv Sci (Weinh)
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye.
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.
View Article and Find Full Text PDFMicroorganisms
December 2024
Biosensor Research Institute, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea.
The WHO has classified Helicobacter pylori as a group 1 carcinogen for stomach cancer since early 1994. However, despite the high prevalence of Helicobacter pylori infection, only about 3% of infected people eventually develop gastric cancer.Biomolecular detections of Helicobacter pylori(HP) were compared using specially modified sensors and fluorine immobilized on a carbon nanotube (HFCNT) electrode, which yielded sensitive results.
View Article and Find Full Text PDFLab Chip
January 2025
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.
Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).
View Article and Find Full Text PDFBiomed Tech (Berl)
December 2024
Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq.
Objectives: Nonenzymatic biosensor-based-conductive polymers like polyaniline are highly electrochemically stable, cheap, and easy to synthesize biosensors, which is the main objective of research as well as testing applied in different pH conditions to get optimum sensitivity.
Methods: A nonenzymatic glucose biosensor based on polyaniline was electrochemically deposited on a glassy carbon electrode; the cyclic voltammetry under range applied voltage -0.2 to 1.
Front Bioeng Biotechnol
December 2024
Electrical and Computer Engineering Department, Lebanese American University, Byblos, Lebanon.
This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!