Genomic selection is revolutionizing plant breeding. However, its practical implementation is still very challenging, since predicted values do not necessarily have high correspondence to the observed phenotypic values. When the goal is to predict within-family, it is not always possible to obtain reasonable accuracies, which is of paramount importance to improve the selection process. For this reason, in this research, we propose the Adversaria-Boruta (AB) method, which combines the virtues of the adversarial validation (AV) method and the Boruta feature selection method. The AB method operates primarily by minimizing the disparity between training and testing distributions. This is accomplished by reducing the weight assigned to markers that display the most significant differences between the training and testing sets. Therefore, the AB method built a weighted genomic relationship matrix that is implemented with the genomic best linear unbiased predictor (GBLUP) model. The proposed AB method is compared using 12 real data sets with the GBLUP model that uses a nonweighted genomic relationship matrix. Our results show that the proposed AB method outperforms the GBLUP by 8.6, 19.7, and 9.8% in terms of Pearson's correlation, mean square error, and normalized root mean square error, respectively. Our results support that the proposed AB method is a useful tool to improve the prediction accuracy of a complete family, however, we encourage other investigators to evaluate the AB method to increase the empirical evidence of its potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849334 | PMC |
http://dx.doi.org/10.1093/g3journal/jkad278 | DOI Listing |
J Chem Inf Model
January 2025
School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.
View Article and Find Full Text PDFCNS Drugs
January 2025
School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, 4222, Australia.
Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.
View Article and Find Full Text PDFMol Divers
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.
View Article and Find Full Text PDFVis Comput Ind Biomed Art
January 2025
School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!