Alzheimer's disease (AD), a neuro-degenerative disease that primarily affects the elderly, is a worldwide phenomenon. Loss of memory, cognitive decline, behavioural changes, and many other signs are used to classify it. Various hypotheses that may contribute to Alzheimer's disease have been found during decades of survey, including tau theory, the amyloid theory, the cholinergic hypothesis, and the oxidative stress hypothesis. According to some theories, the two leading causes of AD are the accumulation of amyloid beta plaque and development of NFTs in the brain. The hippocampus and cerebral cortex are the primary sites where amyloid beta plaques gather in the body. NFT formation in the brain impairs the brain's neurons' potential of signalling. According to the age at which it manifests in a person, there are two subtypes of AD: 'LOAD (Late Onset Alzheimer's Disease)' and 'EOAD (Early Onset Alzheimer's Disease)'. Long-term research into AD treatment has resulted in the introduction of some medications that provided symptomatic relief to patients but did not alter the disease's pathophysiology, like cholinesterase inhibitors, inhibitors of tau aggregation, and monoclonal antibodies to Aβ aggregation. Even though the medications did not halt the progression of AD, researchers did not discontinue their work, which lead to the introduction of gene therapy - a recently created cutting-edge method of delivering genes to target sites where they can express the intended functionalities. Viral or non-viral vectors could be used to deliver the gene, each with advantages and limitations of their own. Gene therapy is proven to be a potential disease-modifying treatment for AD. This article discusses about gene therapy, its merits and demerits and the various ways of gene delivery. Additionally, it focuses on AD as the target for treatment through gene therapy, the pathophysiology of AD, and the multiple targets for gene therapy in the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-023-02873-z | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
January 2025
Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan, China.
Langerhans cell histiocytosis (LCH) is characterized genetically by diverse gene mutations of the mitogen-activated protein kinase signaling cascade. BRAFN486_T491delinsK mutation is a rare mutation that involves the β2-αC ring domain, causing activation of the mitogen-activated protein kinase pathway, and is predicted to be resistant to the chemotherapy and BRAFV600E inhibitor in adult LCH cases. Here, we report a childhood LCH case with this novel BRAF mutation and had a good response to conventional chemotherapy.
View Article and Find Full Text PDFPLoS One
January 2025
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.
Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.
Adv Sci (Weinh)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
January 2025
Cook Children's Medical Center, Fort Worth, TX.
Kaposiform lymphangiomatosis (KLA) is a rare and aggressive subtype of complex lymphatic anomalies (CLA), characterized by abnormal lymphatic proliferation leading to distinct clinical manifestations. Despite the complexity of this condition, there is no established standard therapy, and treatment options such as sclerotherapy, laser therapy, and surgery remain variably effective and are limited to symptom management rather than curative. Sirolimus, an mTOR pathway inhibitor, has shown promise as a primary therapy, particularly in patients without a driver mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!