Ionic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers. Our analysis of the different types of energy involved in ion translocations indicates that electrostatics is the dominant factor controlling ion transfer across these sub-nm pores. A physical model based on the thermionic emission formalism to account for the free energy barriers to ion flow reproduces the - characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c03592DOI Listing

Publication Analysis

Top Keywords

thermionic emission
8
sub-nm pores
8
ion
4
ion trapping
4
trapping thermionic
4
emission sub-nm
4
pores ionic
4
ionic transport
4
transport graphene
4
graphene biomimetic
4

Similar Publications

Phosphorus-based heterojunction tunnel field-effect transistors: from atomic insights to circuit renovations.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.

Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.

View Article and Find Full Text PDF

Electron Loss and Dissociation Pathways of a Complex Dicarboxylate Dianion: EDTA.

J Phys Chem A

December 2024

Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom.

Photoelectron imaging of the doubly deprotonated ethylenediaminetetraacetic acid dianion (EDTA) at variable wavelengths indicates two electron loss pathways: direct detachment and thermionic emission from monoanions. The structure of EDTA is also investigated by electronic structure calculations, which indicate that EDTA has two intramolecular hydrogen bonds linking a carboxylate and carboxylic acid group at either end of the molecular backbone. The direct detachment feature in the photoelectron spectrum is very broad and provides evidence for a dissociative photodetachment, where decarboxylation occurs rapidly after electron loss.

View Article and Find Full Text PDF

Metal/semiconductor superlattices represent a fascinating frontier in materials science and nanotechnology, where alternating layers of metals and semiconductors are precisely engineered at the atomic and nano-scales. Traditionally, epitaxial metal/semiconductor superlattice growth requires constituent materials from the same family, exhibiting identical structural symmetry and low lattice mismatch. Here, beyond this conventional constraint, a novel class of epitaxial lattice-matched metal/semiconductor superlattices is introduced that utilizes refractory hexagonal elemental transition metals and wide-bandgap III-nitride semiconductors.

View Article and Find Full Text PDF

Carboxymethyl cellulose/graphene oxide nanocomposite semiconductor for potential energy applications.

Int J Biol Macromol

January 2025

Institute of Engineering, Science, and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil; Pos-Graduate Program of Chemistry from Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil. Electronic address:

The present research produced a new nanocomposite based on carboxymethyl cellulose (CMC) and graphene oxide (GO) for application in energy devices. A modified Hummers' method and two modifiers (UV radiation and heat temperature) were used. The nanocomposite was characterized by spectroscopies (FTIR, RAMAN, UV Vis), X-ray diffraction, morphological (SEM, TEM, DLS), and surface charge (ZP).

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses the importance of insulators in magnetic tunneling junctions (MTJ) that enhance magnetoresistance (MR) by keeping the magnetization directions of two ferromagnets separate.
  • It introduces a new type of junction called a magnetic emission junction (MEJ), which uses a FGT/ZnO/Ni structure to achieve significantly high electrical conductance compared to traditional MTJs.
  • The MEJ shows a unique behavior with negative MR due to the preferential emission of minority spin electrons, resulting in a much higher conductance (10-1000 times) while maintaining a similar MR ratio to other 2D-MTJs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!