Self-Assembled Multilayered Coatings with Multiple Cyclic Self-Healing Capability, Bacteria Killing, Osteogenesis, and Angiogenesis Properties on Magnesium Alloys.

Adv Healthc Mater

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.

Published: April 2024

Self-healing coatings improve the durability of magnesium (Mg) implants, but rapid corrosion still poses a challenge in the healing stage. Moreover, Mg-based materials with acceptable bacteria killing, osteogenic and angiogenic properties are challenging in biomedical applications. Herein, the self-healing polymeric coatings are fabricated on Mg alloys using the spin-assisted layer-by-layer (SLbL) assembly of hyaluronic acid (HA) and branched polyethyleneimine (bPEI) followed by chemical crosslinking treatment. The self-healing coatings show excellent adhesion strength and structure stability. The corrosion resistance is improved due to the physical barrier of polymer coatings, which also promotes the formation of hydroxyapatite (HAp) during degradation for further protection of Mg substrate. Owing to the dynamic reversible hydrogen bonds existing between HA and bPEI, the crosslinked multilayered coatings possess fast, substantial, and cyclic self-healing capabilities leading to restoration of the original structure and functions. In vitro investigations reveal that the self-healing coatings have multiple functionalities pertaining to bacteria killing, cytocompatibility, osteogenesis, as well as angiogenesis. In addition, the self-healing coatings stimulate alkaline phosphatase activity (ALP), extracellular matrix (ECM) mineralization, and the expression of osteogenesis-related genes of mBMSCs and HUVECs. This study reveals a feasible strategy to design and prepare versatile self-healing coatings on Mg implants for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202302519DOI Listing

Publication Analysis

Top Keywords

self-healing coatings
20
bacteria killing
12
coatings
9
multilayered coatings
8
coatings multiple
8
self-healing
8
cyclic self-healing
8
biomedical applications
8
self-assembled multilayered
4
multiple cyclic
4

Similar Publications

Self-healing Elastomers and Coatings via Metal Coordination Bonds.

Chemistry

January 2025

Tsinghua University, Department of Chemistry, No.1,Tsinghua Yuan Road, 100084, Beijing, CHINA.

Self-healing materials can recover the material from physical damage, and extend the life of equipment. Metal coordination bonds are supramolecular interactions with tunable stability and sensitivity to external stimuli, which are crucial for developing self-healing materials. Incorporating metal coordination bonds into elastomers and coatings can give materials the ability to repair damage and improve the material performance.

View Article and Find Full Text PDF

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.

View Article and Find Full Text PDF

Tunable mechanical properties of PDMS-TMPTMA microcapsules for controlled release in coatings.

Soft Matter

January 2025

School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.

Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.

View Article and Find Full Text PDF

The management of gastrointestinal anastomotic leaks post surgery is a considerable challenge, characterized by elevated morbidity and mortality, particularly in cases of esophageal-jejunal anastomotic leaks. Diverse endoscopic intervention techniques have been utilized with enhanced success. We present a case where a 57-year-old patient with Siewert type II esophageal cardia cancer underwent endoscopic deployment of a fully covered stent into a fistula resulting from anastomotic leakage, following a laparoscopic proximal gastrectomy with Roux-en-Y and double tract reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!