Centimeter-Sized Single Crystals of Tetrahedral Manganese (II) Halide Hybrids for Wide-Color Gamut Backlighting Displays.

Small

Advanced Research Institute of Multidisciplinary Sciences, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing, 100081, P. R. China.

Published: May 2024

Phosphors with narrow-band green emissions and high photoluminescent quantum efficiency (PLQY) are significantly required for backlighting displays with wider color gamut. In this work, two centimeter-sized manganese (II) halide single crystals TMGMnCl and TMGMnBr (TMG = 1,1,3,3-tetramethylguanidine) are synthesized, exhibiting bright narrow-band green emissions with high PLQYs up to 62% and 90%, respectively. The narrow-band green light emission is located at 520 nm with a full-width at half-maximum (FWHM) of only 57 nm. The photoluminescence mechanisms of two single crystals are elaborated. Two white-light-emitting diodes for backlighting displays (BD-WLEDs) based on them are fabricated, exhibiting the widest color gamut of 122% National Television Standards Committee (NTSC), and a luminous efficacy reached ≈93 lm W with excellent luminescence stability at high temperatures. These properties indicate the potential applications of tetrahedral manganese (II) hybrids in wide-color gamut backlighting displays.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307216DOI Listing

Publication Analysis

Top Keywords

backlighting displays
16
single crystals
12
narrow-band green
12
tetrahedral manganese
8
manganese halide
8
hybrids wide-color
8
wide-color gamut
8
gamut backlighting
8
green emissions
8
emissions high
8

Similar Publications

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Digital Mini-LED Lighting Using Organic Thin-Film Transistors Reaching over 100,000 Nits of Luminance.

Nanomaterials (Basel)

January 2025

Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

This paper demonstrates the use of organic thin-film transistors (OTFTs) to drive active digital mini light-emitting diode (mini-LED) backlights, aiming to achieve exceptional display performance. Our findings reveal that OTFTs can effectively power mini-LED backlights, reaching brightness levels exceeding 100,000 nits. This approach not only enhances image quality but also improves energy efficiency.

View Article and Find Full Text PDF

Stretchable Primary-Blue Color-Conversion Layer: Crystallization of Phase-Engineered Perovskite Nanocrystals in an Organic Matrix.

ACS Nano

January 2025

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Although the use of ultraviolet (UV) light-emitting diode backlight with red, green, and blue color-conversion layers (CCLs) in displays simplifies the manufacturing process and improves display uniformity, research on blue CCLs remains limited and has been mostly reported in the sky-blue region (> 470 nm), which is insufficient to satisfy the Rec. 2020 color standard. As halide perovskites offer a high extinction coefficient, color purity, and photoluminescence quantum yield (PLQY), they become highly competitive color-converting materials for CCLs.

View Article and Find Full Text PDF

Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film.

Polymers (Basel)

December 2024

Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.

A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.

View Article and Find Full Text PDF

Wide color gamut display has become a new generation of display technology because of its good color saturation. However, the low quantum efficiency and wide half peak width of narrow-band green phosphors are still the main barriers in their development and application. This work addresses these challenges by using Mn as the luminescent center and constructing efficient Eu → Mn energy transfer in NaMgAlO (NMAO) matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!