Shear banding in monodisperse polymer melt.

J Chem Phys

National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.

Published: December 2023

We performed a series of molecular dynamics simulations on monodisperse polymer melts to investigate the formation of shear banding. Under high shear rates, shear banding occurs, which is intimately accompanied by the entanglement heterogeneity. Interestingly, the same linear relationship between the end-to-end distance Ree and entanglement density Z is observed at homogeneous flow before the onset of shear banding and at the shear banding state, where Ree ∼ ln(Wi0.87)-ξ0Z is proposed as the criterion to describe the dynamic force balance of the molecular chain in flow with a high rate. Deviating from this relation leads to a force imbalance and results in the emergence of shear banding. We establish a scaling relation between the disentanglement rate Vd and the Weissenberg number Wi as Vd∼Wi0.87 for stable flow in homogeneous shear and shear banding states. The formation of shear banding prevents chains from further stretching and disentanglement. The transition from homogeneous shear to shear banding partially dissipates the increased free energy from shear and reduces the free energy of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0178170DOI Listing

Publication Analysis

Top Keywords

shear banding
36
shear
13
monodisperse polymer
8
formation shear
8
banding
8
homogeneous shear
8
shear shear
8
free energy
8
banding monodisperse
4
polymer melt
4

Similar Publications

This work studies numerically the development of adiabatic shear banding (ASB) during high strain-rate compression of AISI 1045 steel. Plane strain and cylindrical axisymmetric compressions are simulated in LS-DYNA, considering rectangular and cylindrical steel samples, respectively. Also, a parametric analysis in height-to-base ratio is conducted in order to evaluate the effect of geometry and dimensional ratio of the sample on ASB formation.

View Article and Find Full Text PDF

Mechanical properties of (Ni, Fe)Cr2O4 polycrystal spinels studied by molecular dynamics simulations.

J Chem Phys

November 2024

Université Paris-Saclay, CEA, Service de Recherche en Corrosion et Comportement des Matériaux, F-91191 Gif-sur-Yvette, France.

The elastic moduli and mechanical properties at the onset of crack in nanocrystalline and nanoporous (Ni, Fe)Cr2O4 compounds with a spinel structure are investigated by molecular dynamics simulations. The polycrystalline structures generated contain nanograins from 2.5 to 30 nm in diameter.

View Article and Find Full Text PDF

Ti-based bulk metallic glass composites (BMGMCs) containing an formed metastable β phase normally exhibit enhanced plasticity attributed to induced phase transformation or twinning. However, the underlying deformation micromechanism remains controversial. This study investigates a novel deformation mechanism of Ti-based BMGMCs with a composition of TiZrCuNbNiBe (at%).

View Article and Find Full Text PDF

Transcrystalline Mechanism of Banded Spherulites Development in Melt-Crystallized Semicrystalline Polymers.

Polymers (Basel)

August 2024

Department of Chemical Engineering, Biotechnology and Materials, Faculty of Engineering, Ariel University, Ariel 40700, Israel.

The decades-long paradigm of continuous and perpetual lamellar twisting constituting banded spherulites has been found to be inconsistent with several recent studies showing discontinuity regions between consecutive bands, for which, however, no explanation has been found. The present research demonstrates, in three different semicrystalline polymers (HDPE, PEG10000 and Pluronic F-127), that sequential transcrystallinity is the predominant mechanism of banded spherulite formation, heterogeneously nucleated on intermittent self-shear-oriented amorphous layers excluded during the crystals' growth. It is hereby demonstrated that a transcrystalline layer can be nucleated on amorphous self-shear-oriented polymer chains in the melt, by a local melt flow in the bulk or in contact with any interface-even in contact with the interface with air, e.

View Article and Find Full Text PDF

We present a comprehensive investigation combining numerical simulations with experimental validation, focusing on the creeping flow behavior of a shear-banding, viscoelastic wormlike micellar (WLM) solution over concavities with various depths () and lengths (). The fluid is modeled using the diffusive Giesekus model, with model parameters set to quantitatively describe the shear rheology of a 100 : 60 mM cetylpyridinium chloride:sodium salicylate aqueous WLM solution used for the experimental validation. We observe a transition from "cavity flow" to "expansion-contraction flow" as the length exceeds the sum of depth and channel width .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!