A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the structural stability and electrochemical performance of B doped T-graphene nanotubes from first-principles calculations. | LitMetric

The structural stability and electrochemical performance of intrinsic and B doped T-graphene nanotubes with different tube lengths are systematically studied by using first-principles calculations within the framework of density functional theory (DFT). The results show that with the increase of tube length, the adsorption energy of both intrinsic and B doped T-graphene nanotubes exhibits regular oscillations, and B doping is beneficial for elevating the adsorption ability of T-graphene nanotubes. The density of states show that intrinsic T-graphene nanotubes are zero band gap semiconductors, and the orbitals' electronic states cross the Fermi level to form a p-type semiconductor, indicating that B doping greatly improves the conductivity of the system. The results of migration behavior demonstrate that B doping can effectively reduce the diffusion barrier of lithium ions on their surface, especially in B doped T-graphene nanotubes with a tube length of = 1, resulting in more effective migration behavior and excellent rate performance. These findings provide a theoretical basis for the development and application of negative electrode materials for lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04143cDOI Listing

Publication Analysis

Top Keywords

t-graphene nanotubes
24
doped t-graphene
16
structural stability
8
stability electrochemical
8
electrochemical performance
8
first-principles calculations
8
intrinsic doped
8
nanotubes tube
8
tube length
8
migration behavior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!