Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2023-0261 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.
View Article and Find Full Text PDFACS Nano
January 2025
Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Heating techniques have underpinned the progress of the material and manufacturing industries. However, the explosive development of nanomaterials and micro/nanodevices has raised more requirements for the heating technique, including but not limited to high efficiency, low cost, high controllability, good usability, scalability, universality, and eco-friendliness. Carbothermal shock (CTS), a heating technique derived from traditional electrical heating, meets these requirements and is advancing at a high rate.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!