Here, we report the synthesis of three-dimensional plasmonic nanolenses for strong near-field focusing. The nanolens exhibits a distinctive structural arrangement composed of nanoporous sponge-like networks within their interior. We denote these novel nanoparticles as "Au octahedral nanosponges" (Au Oh NSs). Employing a carefully planned multistep synthetic approach with Au octahedra serving as sacrificial templates, we successfully synthesized Au Oh NSs in solution. The porous domains resembling sponges contributed to enhanced scattering and absorption of incident light within metal ligaments. This optical energy was subsequently transferred to the nanospheres at the vertex, where near-field focusing was maximized. We named this observed enhancement a "lightning-sphere effect". Using single particle-by-particle surface-enhanced Raman scattering (SERS), we optimized the morphological dimensions of the spheres and porous domains to achieve the most effective near-field focusing. In the context of bulk SERS measurements targeting weakly adsorbing analytes (2-chloroethyl phenyl sulfide) in the gas phase, we achieved a low detection limit of 10 ppb. For nonadsorbing species (dimethyl methyl phosphonate), utilization of hybrid SERS substrates consisting of Au Oh NSs and metal-organic frameworks as gas-adsorbing intermediate layers was highly effective for successful SERS detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c08315DOI Listing

Publication Analysis

Top Keywords

near-field focusing
16
plasmonic nanolenses
8
porous domains
8
octahedral nanosponges
4
nanosponges plasmonic
4
near-field
4
nanolenses near-field
4
focusing
4
focusing report
4
report synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!