Introduction: Food crops are increasingly susceptible to the challenging impacts of climate change, encompassing both abiotic and biotic stresses, that cause yield losses. Root-associated microorganisms, including plant growth-promoting bacteria (PGPB), can improve plant growth as well as plant tolerance to environmental stresses. The aims of this work were to characterize bacteria isolated from soil and roots of tomato plants grown in open field.

Methods: Biochemical and molecular analyses were used to evaluate the PGP potential of the considered strains on tomato plants in controlled conditions, also assessing their effects under a water deficit condition. The isolated strains were classified by 16S gene sequencing and exhibited typical features of PGPB, such as the release of siderophores, the production of proteases, and phosphorous solubilization. Inoculating tomato plants with eleven selected strains led to the identification of potentially interesting strains that increased shoot height and dry weight. Three strains were then selected for the experiment under water deficit in controlled conditions. The tomato plants were monitored from biometric and physiological point of view, and the effect of inoculation at molecular level was verified with a targeted RT-qPCR based approach on genes that play a role under water deficit condition.

Results: Results revealed the PGP potential of different bacterial isolates in tomato plants, both in well-watered and stressed conditions. The used integrated approach allowed to obtain a broader picture of the plant status, from biometric, eco-physiological and molecular point of view. Gene expression analysis showed a different regulation of genes involved in pathways related to abscisic acid, osmoprotectant compounds and heat shock proteins, depending on the treatments.

Discussion: Overall, results showed significant changes in tomato plants due to the bacterial inoculation, also under water deficit, that hold promise for future field applications of these bacterial strains, suggesting that a synergistic and complementary interaction between diverse PGPB is an important point to be considered for their exploitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706133PMC
http://dx.doi.org/10.3389/fpls.2023.1297090DOI Listing

Publication Analysis

Top Keywords

tomato plants
24
water deficit
16
pgp potential
8
controlled conditions
8
point view
8
tomato
7
plants
6
strains
6
plant
5
water
5

Similar Publications

Introduction: Melasma, also known as chloasma, is a common skin disorder characterized by acquired hyperpigmentation. Many patients with this condition prefer using herbal remedies instead of chemical agents. This study aims to review clinical trials conducted on the effectiveness of herbal remedies in treating melasma.

View Article and Find Full Text PDF

Steryl esters (SE) are a storage pool of sterols that accumulates in cytoplasmic lipid droplets and helps to maintain plasma membrane sterol homeostasis throughout plant growth and development. Ester formation in plant SE is catalyzed by phospholipid:sterol acyltransferase (PSAT) and acyl-CoA:sterol acyltransferase (ASAT), which transfer long-chain fatty acid groups to free sterols from phospholipids and acyl-CoA, respectively. Comparative mass spectrometry-based metabolomic analysis between ripe fruits and seeds of a tomato (Solanum lycopersicum cv Micro-Tom) mutant lacking functional PSAT and ASAT enzymes (slasat1xslpsat1) shows that disruption of SE biosynthesis has a differential impact on the metabolome of these organs, including changes in the composition of free and glycosylated sterols.

View Article and Find Full Text PDF

Diatom contained alginate-chitosan hydrogel beads with enhanced hydrogen bonds and ionic interactions for extended release of gibberellic acid.

Int J Biol Macromol

December 2024

AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Hydrogels in agriculture offer controlled release, however, face issues with rapid disintegration, swift release, and inability to protect active ingredients. To overcome this, the study presents a hydrogel delivery system that uses dopamine-functionalized nanoporous diatom (DE-PDA) microparticles entrapped in alginate and chitosan matrices to deliver plant growth hormone, gibberellic acid (GA) that suffers from instability, limiting its field application. Developed GA@hydrogel beads exhibited an encapsulation efficiency of 85.

View Article and Find Full Text PDF

RNA modifications in plant adaptation to abiotic stresses.

Plant Commun

December 2024

Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China,. Electronic address:

Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the plant stress adaptation process. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long-noncoding RNAs (lncRNAs). The genetic and molecular studies have identified the genes responsible for adding and removing chemical modifications on RNA molecules, known as "writers" and "erasers," respectively.

View Article and Find Full Text PDF

Novel exploitation of autophagy by tombusviruses.

Virology

December 2024

Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.

Positive-strand (+)RNA viruses are major pathogens of humans, animals and plants. This review summarizes the complex interplay between the host autophagy pathway and Tomato bushy stunt virus (TBSV) replication. Recent discoveries with TBSV have revealed virus-driven exploitation of autophagy in multiple ways that contributes to the unique phospholipid composition of viral replication organellar (VROs) membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!