Aim: To assess and compare the antibacterial efficacy of methylene blue (MB) and red laser (660 nm) antimicrobial photodynamic therapy (aPDT), indocyanine green (ICG) and infrared laser (810 nm) aPDT, and dual-dye (MB and ICG) and dual light (red and infrared) aPDT on oral biofilms of and (.
Materials And Methods: Biofilms of and were grown at 36°C and 5% CO for 7 days in a 96-well plate in a brain heart infusion (BHI) growth medium. Before aPDT, a total of 27 inoculums were collected from culture wells and grown on culture plates to assess baseline colony forming units (CFU). The microbial wells were treated with MBaPDT (group I), ICGaPDT (group II), and MBICGaPDT (group III). Post-aPDT, inoculums were collected from wells to be cultured to assess CFU. One-way analysis of variance (ANOVA) and student paired -tests were used for statistical analysis. The significance level was fixed at ≤ 0.05.
Results: Methylene blue antimicrobial photodynamic therapy (MBaPDT) caused a significant reduction in counts compared to other groups ( = 11.15, = 0.01). aPDT on resulted in a significant ( = 0.04) reduction of bacterial counts in the ICGaPDT group. aPDT on resulted in a significant reduction in bacterial counts ( ≤ 0.05) in MBaPDT and ICGaPDT groups.
Conclusion: Dual-dye and dual light aPDT showed an antibacterial effect against . It was ineffective against and .
Clinical Significance: Dual-dye aPDT may effectively reduce counts in infected root canals and improve the outcomes of root canal treatment.
How To Cite This Article: Yavagal C, Yavagal PC, Marwah N, Antibacterial Efficacy of Dual-dye and Dual Laser Photodynamic Therapy on Oral Biofilms of , and : An Study. Int J Clin Pediatr Dent 2023;16(S-2):S128-S132.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701177 | PMC |
http://dx.doi.org/10.5005/jp-journals-10005-2662 | DOI Listing |
J Mater Chem B
January 2025
Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
A pair of aza-BODIPY isomers, 1,7-di--butyl-3,5-dinaphthyl (Nap-BDP) and 1,7-dinaphthyl-3,5-di--butyl (revNap-BDP), were prepared in this study. According to the single crystal X-ray analysis, Nap-BDP exhibited an orthogonal structure. Owing to the difference in orthogonality and -Bu rotation between Nap-BDP and revNap-BDP, their spectral performances, including maximum absorption and emission, full width at half maximum, fluorescence quantum yield, photostability, singlet oxygen generation and photothermal conversion efficiency, were obviously different.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Immunotherapy, particularly immune checkpoint blockade (ICB) therapies, has revolutionized oncology. However, it encounters challenges such as inadequate drug accumulation and limited efficacy against "cold" tumors characterized by lack of T cell infiltration and immunosuppressive microenvironments. Here, a controlled antibody production and releasing nanoparticle (CAPRN) is introduced, designed to augment ICB efficacy by facilitating tumor-targeted antibody production and inducing photodynamic cell death.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.
Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
Malignant tumors have been a serious threat to human health with their increasing incidence. Difficulties with conventional treatments are toxicity, drug resistance, and recurrence. For this reason, non-invasive treatment modalities such as photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), and others have received much attention.
View Article and Find Full Text PDFSmall
January 2025
The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China.
The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!