The concept of the latent geometry of a network that can be represented as a graph has emerged from the classrooms of mathematicians and theoretical physicists to become an indispensable tool for determining the structural and dynamic properties of the network in many application areas, including contact networks, social networks, and especially biological networks. It is precisely latent geometry that we discuss in this article to show how the geometry of the metric space of the graph representing the network can influence its dynamics. We considered the transcriptome network of the Chronic Myeloid Laeukemia K562 cells. We modelled the gene network as a system of springs using a generalization of the Hooke's law to -dimension ( ≥ 1). We embedded the network, described by the matrix of spring's stiffnesses, in Euclidean, hyperbolic, and spherical metric spaces to determine which one of these metric spaces best approximates the network's latent geometry. We found that the gene network has hyperbolic latent geometry, and, based on this result, we proceeded to cluster the nodes according to their radial coordinate, that in this geometry represents the node popularity. Clustering according to radial coordinate in a hyperbolic metric space when the input to network embedding procedure is the matrix of the stiffnesses of the spring representing the edges, allowed to identify the most popular genes that are also centres of effective spreading and passage of information through the entire network and can therefore be considered the drivers of its dynamics. The correct identification of the latent geometry of the network leads to experimentally confirmed clusters of genes drivers of the dynamics, and, because of this, it is a trustable mean to unveil important information on the dynamics of the network. Not considering the latent metric space of the network, or the assumption of a Euclidean space when this metric structure is not proven to be relevant to the network, especially for complex networks with hierarchical or modularised structure can lead to unreliable network analysis results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704170 | PMC |
http://dx.doi.org/10.3389/fcell.2023.1235116 | DOI Listing |
Variational autoencoders (VAEs) employ Bayesian inference to interpret sensory inputs, mirroring processes that occur in primate vision across both ventral (Higgins et al., 2021) and dorsal (Vafaii et al., 2023) pathways.
View Article and Find Full Text PDFMol Inform
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
Interpretability and reliability of deep learning models are important for computer-based drug discovery. Aiming to understand feature perception by such a model, we investigate a graph neural network for affinity prediction of protein-ligand complexes. We assess a latent representation of ligand binding sites and investigate underlying geometric structure in this latent space and its relation to protein function.
View Article and Find Full Text PDFNeural Netw
November 2024
School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. Electronic address:
Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies.
View Article and Find Full Text PDFMed Image Anal
February 2025
Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada; Polytechnique Montréal, Montréal, QC, Canada. Electronic address:
Anterior vertebral tethering (AVT) is a non-invasive spine surgery technique, treating severe spine deformations and preserving lower back mobility. However, patient positioning and surgical strategies greatly influences postoperative results. Predicting the upright geometry from pediatric spines is needed to optimize patient positioning in the operating room (OR) and improve surgical outcomes, but remains a complex task due to immature bone properties.
View Article and Find Full Text PDFNat Commun
November 2024
Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA.
Eddy-resolving turbulence simulations are essential for understanding and controlling complex unsteady fluid dynamics, with significant implications for engineering and scientific applications. Traditional numerical methods, such as direct numerical simulations (DNS) and large eddy simulations (LES), provide high accuracy but face severe computational limitations, restricting their use in high-Reynolds number or real-time scenarios. Recent advances in deep learning-based surrogate models offer a promising alternative by providing efficient, data-driven approximations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!