Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol biosynthesis associated with congenital malformations, growth delay, intellectual disability and behavior problems. SLOS is caused by bi-allelic mutations in , which lead to reduced activity of 7-dehydrocholesterol reductase that catalyzes the last step in cholesterol biosynthesis. Symptoms of SLOS are thought to be due to cholesterol deficiency and accumulation of its precursor 7-dehydrocholesterol (7-DHC) and 8-dehydrocholesterol (8-DHC), and toxic oxysterols. Therapy for SLOS often includes dietary cholesterol supplementation, but lipids are poorly absorbed from the diet, possibly due to impaired bile acid synthesis. We hypothesized that bile acid supplementation with cholic acid would improve dietary cholesterol absorption and raise plasma cholesterol levels.
Methods: Twelve SLOS subjects (10 M, 2F, ages 2-27 years) who had plasma cholesterol ≤125 mg/dL were treated with cholic acid (10 mg/kg/day) divided twice daily for 2 months. Plasma cholesterol, 7-DHC and 8-DHC were measured by GC-MS. Oxysterols were measured by ultra-high-performance LC-MS/MS. Data were analyzed using paired -tests.
Results: At baseline, plasma cholesterol was 75 ± 24 mg/dL (mean ± SD; range 43-125, = 12). After 2 months on cholic acid, mean plasma cholesterol increased to 97 ± 29 mg/dL ( = 0.011). Eleven of 12 subjects showed an increase in plasma cholesterol that varied from 3.8% to 85.7% (mean 38.7 ± 23.3%). 7-Hydroxycholesterol decreased by 20.6% on average ( = 0.013) but no significant changes were seen in 7-DHC or 8-DHC. Mean body weight tended to increase (3.6% = 0.069). Subjects tolerated cholic acid well and experienced no drug-related adverse events.
Conclusions: In this pilot study, cholic acid supplementation was well tolerated and safe and resulted in an increase in plasma cholesterol in most SLOS subjects. Further controlled longitudinal studies are needed to look for the sustainability of the biochemical effect and possible clinical benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698565 | PMC |
http://dx.doi.org/10.1016/j.ymgmr.2023.101030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!