LGNN: a novel linear graph neural network algorithm.

Front Comput Neurosci

College of Computer, Qinghai Normal University, Xining, Qinghai, China.

Published: November 2023

The emergence of deep learning has not only brought great changes in the field of image recognition, but also achieved excellent node classification performance in graph neural networks. However, the existing graph neural network framework often uses methods based on spatial domain or spectral domain to capture network structure features. This process captures the local structural characteristics of graph data, and the convolution process has a large amount of calculation. It is necessary to use multi-channel or deep neural network structure to achieve the goal of modeling the high-order structural characteristics of the network. Therefore, this paper proposes a linear graph neural network framework [Linear Graph Neural Network (LGNN)] with superior performance. The model first preprocesses the input graph, and uses symmetric normalization and feature normalization to remove deviations in the structure and features. Then, by designing a high-order adjacency matrix propagation mechanism, LGNN enables nodes to iteratively aggregate and learn the feature information of high-order neighbors. After obtaining the node representation of the network structure, LGNN uses a simple linear mapping to maintain computational efficiency and obtain the final node representation. The experimental results show that the performance of the LGNN algorithm in some tasks is slightly worse than that of the existing mainstream graph neural network algorithms, but it shows or exceeds the machine learning performance of the existing algorithms in most graph neural network performance evaluation tasks, especially on sparse networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10706932PMC
http://dx.doi.org/10.3389/fncom.2023.1288842DOI Listing

Publication Analysis

Top Keywords

graph neural
28
neural network
28
network structure
12
network
10
graph
9
linear graph
8
neural
8
network framework
8
structure features
8
structural characteristics
8

Similar Publications

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.

Mol Divers

January 2025

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Visual semantic decoding aims to extract perceived semantic information from the visual responses of the human brain and convert it into interpretable semantic labels. Although significant progress has been made in semantic decoding across individual visual cortices, studies on the semantic decoding of the ventral and dorsal cortical visual pathways remain limited. This study proposed a graph neural network (GNN)-based semantic decoding model on a natural scene dataset (NSD) to investigate the decoding differences between the dorsal and ventral pathways in process various parts of speech, including verbs, nouns, and adjectives.

View Article and Find Full Text PDF

In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!